
© Iraq university collage - Department of Computer Engineering Techniques

1

MODULE DESCRIPTION FORM

 الدراسية المادة وصف نموذج

Module Information

 الدراسية المادة معلومات

Module Title Object Oriented Programming Module Delivery

Module Type S ☒ Theory

☐ Lecture

☒ Lab

☒ Tutorial

☐ Practical

☐ Seminar

Module Code CET2102

ECTS Credits 6

SWL (hr/sem) 150

Module Level 2 Semester of Delivery 3

Administering Department CET College IUC

Module Leader Prof. Hamza Al-Sewadi e-mail hamza.ali@iuc.edu.iq

Module Leader’s Acad. Title Module Leader’s Qualification Ph.D.

Module Tutor e-mail

Peer Reviewer Name

e-mail

Scientific Committee Approval

Date
10/7/2023 Version Number 1.0

Relation with other Modules

 العلاقة مع المواد الدراسية الأخرى

Prerequisite module Programming Essentials / CET1203 Semester 2

Co-requisites module None Semester

© Iraq university collage - Department of Computer Engineering Techniques

2

Module Aims, Learning Outcomes and Indicative Contents

 أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

Module Aims

 الدراسية المادة أهداف

1. Understand and apply object-oriented programming principles.

2. Design and implement object-oriented solutions to programming problems.

3. Utilize C++ libraries and frameworks for application development.

4. Implement data abstraction and encapsulation for secure and efficient code.

5. Plan and execute testing strategies for reliable programs.

6. Debug and optimize program performance for efficient execution.

Module Learning

Outcomes

 الدراسية للمادة التعلم مخرجات

1. Demonstrate a clear understanding of object-oriented programming

principles, including inheritance, polymorphism, and encapsulation.

2. Design and implement classes and objects to represent real-world entities,

applying appropriate inheritance and encapsulation.

3. Utilize C++ libraries and frameworks effectively to develop robust and

scalable applications.

4. Implement data abstraction and encapsulation techniques to ensure secure

and efficient code.

5. Plan and execute comprehensive testing strategies to validate the

functionality and reliability of object-oriented programs.

6. Identify and debug program errors using appropriate tools and techniques,

enhancing program robustness.

7. Evaluate and optimize program performance through code analysis and

profiling, improving execution efficiency.

8. Collaborate effectively with peers to develop object-oriented solutions to

complex programming challenges.

9. Apply exception handling techniques to handle errors and ensure program

stability.

10. Demonstrate proficiency in utilizing debugging tools to identify and fix

program errors.

11. Apply object-oriented design patterns and principles to analyze and solve

programming problems.

12. Evaluate the efficiency and effectiveness of object-oriented solutions through

critical analysis and optimization techniques.

Indicative Contents

 المحتويات الإرشادية

Indicative content includes the following.

Part A: Introduction to Object-Oriented Programming (8 hours)

- Overview of object-oriented programming principles and concepts

- Classes, objects, and their relationships

- Inheritance and polymorphism

- Encapsulation and data abstraction

© Iraq university collage - Department of Computer Engineering Techniques

3

 Part B: Designing Object-Oriented Solutions (12 hours)

- Problem analysis and requirements gathering

- Identifying classes and objects

- Object-oriented design principles and patterns

- Designing class hierarchies and relationships

- UML diagrams for visualizing designs

Part C: Implementing Object-Oriented Solutions in C++ (20 hours)

- C++ language essentials for object-oriented programming

- Implementing classes and objects in C++

- Inheritance and polymorphism in C++

- Handling exceptions in C++

- Utilizing C++ libraries and frameworks

Part D: Testing and Debugging Object-Oriented Programs (12 hours)

- Testing methodologies and strategies

- Unit testing and test-driven development

- Integration testing and system testing

- Debugging techniques and tools

- Error handling and exception management

Part E: Optimization and Performance Analysis (8 hours)

- Profiling and performance analysis tools

- Identifying performance bottlenecks

- Optimization techniques for object-oriented programs

- Memory management and resource optimization

Part F: Collaborative Object-Oriented Programming (8 hours)

- Collaborative development environments and version control systems

- Code reviews and best practices

- Pair programming and team collaboration

- Communication and coordination in object-oriented projects

Part G: Project Work and Application Development (20 hours)

- Applying object-oriented principles and techniques in a practical project

- Developing a complete application using C++ and object-oriented design

- Project planning, implementation, and documentation

- Integration of various modules and testing the application

© Iraq university collage - Department of Computer Engineering Techniques

4

Learning and Teaching Strategies

 استراتيجيات التعلم والتعليم

Strategies

The learning and teaching strategies for the Object-Oriented Programming Course

include lectures to introduce concepts, practical exercises for hands-on

programming, group discussions for collaboration, case studies for real-world

application, code reviews for feedback, practical projects to apply knowledge, guest

lectures for industry insights, online resources for self-study, assessments to evaluate

understanding, and presentations to enhance communication skills. These strategies

aim to actively engage students, develop their programming abilities, and foster a

deep understanding of object-oriented programming principles.

Student Workload (SWL)

 اسبوعا ١٥الحمل الدراسي للطالب محسوب لـ

Structured SWL (h/sem)

 الحمل الدراسي المنتظم للطالب خلال الفصل
79

 Structured SWL (h/w)

 الحمل الدراسي المنتظم للطالب أسبوعيا
5.26

Unstructured SWL (h/sem)

 الحمل الدراسي غير المنتظم للطالب خلال الفصل
71

 Unstructured SWL (h/w)

 الحمل الدراسي غير المنتظم للطالب أسبوعيا
4.73

Total SWL (h/sem)

 للطالب خلال الفصل الحمل الدراسي الكلي
150

Module Evaluation

 الدراسية المادة تقييم

 Time/Nu

mber
Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 2 10% (5) 5,10 LO #1 – 4, LO #1 – 9

Assignments 2 10% (10) 4,11 LO #1 – 3, LO #4 – 10

Projects / Lab. 1 10% (10) Continuous LO #1 – 12

Report 1 10% (10) 11 LO # 1- 10

Summative

assessment

Midterm Exam 2 hrs. 10% (10) 7 LO # 1-6

Final Exam 4hrs. 50% (50) 16 All

Total assessment 100% (100 Marks)

© Iraq university collage - Department of Computer Engineering Techniques

5

Delivery Plan (Weekly Syllabus)

 المنهاج الاسبوعي النظري

 Material Covered

Week 1 Introduction to Object-Oriented Programming

Week 2 Classes, Objects, and Relationships

Week 3 Inheritance and Polymorphism principles

Week 4 Encapsulation and Data Abstraction

Week 5 Problem Analysis and Requirements Gathering

Week 6 Object-Oriented Design Principles and Patterns

Week 7 Mid-term Exam

Week 8 C++ Language Essentials and Advanced Topics

Week 9 Implementing Classes and Objects in C++

Week 10 Implementing Inheritance and Polymorphism in C++

Week 11 Handling Exceptions in C++

Week 12 Utilizing C++ Libraries and Frameworks

Week 13 Testing Methodologies and Strategies in C++

Week 14 Debugging Techniques and Tools in C++

Week 15 Optimization and Performance Analysis in C++

Week 16 Preparatory week before the final Exam

© Iraq university collage - Department of Computer Engineering Techniques

6

Delivery Plan (Weekly Lab. Syllabus)

 المنهاج الاسبوعي للمختبر

 Material Covered

Week 1 Introduction to C++ programming environment and basic syntax.

Week 2 Implementing simple classes and objects.

Week 3 Experimenting with inheritance and polymorphism in C++.

Week 4 Implementing data abstraction and encapsulation.

Week 5 Problem-solving exercise using object-oriented design principles and patterns.

Week 6 Utilizing C++ libraries and frameworks for application development.

Week 7 Midterm Exam (No lab session).

Week 8 Implementing exception handling techniques in C++.

Week 9 Testing and debugging strategies for object-oriented programs.

Week 10 Profiling and performance analysis of C++ programs.

Week 11 Code optimization techniques for object-oriented programming.

Week 12 Collaborative programming exercise utilizing version control systems.

Week 13 Implementing advanced data structures using object-oriented techniques.

Week 14 Project work and application development using object-oriented concepts.

Week 15 review and practice exercises, Preparatory for Final Exam.

Week 16 Final Exam (No lab session).

 Learning and Teaching Resources

 مصادر التعلم والتدريس

Text

Available in the

Library?

Required Texts "Object-Oriented Programming in C++" by Robert Lafore

Recommended Texts

"Design Patterns: Elements of Reusable Object-Oriented

Software" by Erich Gamma, Richard Helm, Ralph Johnson,

and John Vlissides

Websites https://www.w3schools.com/cpp/cpp_oop.asp

http://www.w3schools.com/cpp/cpp_oop.asp

© Iraq university collage - Department of Computer Engineering Techniques

7

Grading Scheme
 الدرجات مخطط

Group Grade التقدير Marks (%) Definition

Success Group

(50 - 100)

A - Excellent 100 - 90 امتياز Outstanding Performance

B - Very Good 89 - 80 جدا جيد Above average with some errors

C - Good 79 - 70 جيد Sound work with notable errors

D - Satisfactory 69 - 60 متوسط Fair but with major shortcomings

E - Sufficient 59 - 50 مقبول Work meets minimum criteria

Fail Group

(0 – 49)

FX – Fail (49-45))المعالجة قيد(راسب More work required but credit awarded

F – Fail (44-0) راسب Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a

mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT

to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the

automatic rounding outlined above.

