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1.1 OPEN LOOP SYSTEM 

The open loop control system is a non-
feedback system in which the control input 
to the system is determined using only the 
current state of the system and a model of 
the system. Control characteristic of such 
systems are independent of o/p of the 
system.  

C G
R
=

Examples: 
1) Automatic coffee server
2) Bottling m/c of cold drink
3) Traffic Signal
4) Electric lift,
5) Automatic washing m/c

1.1.1 ADVANTAGE 

1) No stability problem.
2) The open-loop system is simple to

construct and is cheap.
3) Open loop systems are generally stable

1.1.2 DISADVANTAGE 

1) The open loop system is inaccurate &
unreliable

2) The effect of parameter variation and
external noise is more.

3) The operation of open-loop system is
affected due to the presence of non-
linearity in its elements.

Note: 
• An open loop stable system may

become unstable when negative
feedback is applied.

• Except oscillators, in positive feedback,
we have always unstable systems.

1.2 CLOSED LOOP SYSTEM 

The closed loop control system is a system 
where the actual behavior of the system is 
sensed and then fed back to the controller 
and mixed with the reference or desired 
state of the system to adjust the system to 
its desired state. Control characteristic of 
the system depends upon the o/p of the 
system. 

C G
R 1 GH
=

+
 (Negative feedback) 

Examples: 
1) Electric iron
2) DC motor speed control
3) A missile launching system (direction of

missile
4) Changes with the location of target)
5) Radar Tracking system
6) Human Respiratory system
7) A man driving a vehicle (eye-sensor,

Brain-controller)
8) Auto pilot system
9) Economic inflation

1.2.1 ADVANTAGES 

1) As the error between the reference
input and the output is continuously
measured through feedback, the closed-
loop system works more accurately.

2) Reduced effect of parameter variation
3) BW of system can be increased
4) Reduced effect of non-linearity

1 BLOCK DIAGRAMS
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1.2.2 DISADVANTAGES 

1) The system is complex and costly
2) Gain of system reduces with negative

feedback
3) The closed loop systems can become

unstable under certain conditions.

1.3 LAPLACE TRANSFORM 

The ability to obtain linear approximations 
of physical systems allows the analyst to 
consider the use of the Laplace 
transformation. The Laplace transform 
methods substitutes relatively easily solved 
algebraic equations for the more difficult 
differential equations. 
The Laplace transform exists for linear 
differential equations for which the 
transformation integral converges. 
Therefore, for f (t) to be transformable, it is 
sufficient that 

( ) st

0

f t e dt
∞

− < ∞∫
Signals that are physically realizable 
always have a Laplace transform. The 
Laplace transformation for a function of 
time, f (t), is 

( ) st

0

L{f (t)} F s f (t)e dt
∞

−= = ∫
1.3.1 IMPORTANT RESULTS 

F(t) = F(s) 
1) δ(t) 1=

2) 1u(t)
s

=

3) sT1u(t T) e
s

−− =

4) ( ) 2

1t u t
s

=

5) ( )
2

3

t 1u t
2 s

=

6) ( )n
n 1

n!t u t
s +=

7) ( )at 1e u t
s a

=
−

8) ( )at 1e u t
s a

− =
+

9) ( )at
2

1te u t
(s a)−

=

10) ( )at
2

1te u t
(s a)

− =
+

11) ( )n att e u t− = n 1

n!
(s a) ++

12) ( ) 2 2

ωsinωt u t =
s ω+

13) ( ) 2 2

scosωtu t  =
s ω+

14) ( )ate sinωt u t−
= 2 2

ω
(s + a) ω+

15) ( )ate cosωt u t−
= 2 2

s + a
(s + a) ω+

16) ( )sinh ωt u t = 2 2

ω
s ω−

17) ( )cosh ωt u t = 2 2

s
s ω−

1.3.2 PROPERTIES OF LAPLACE 
TRANSFORM 

1) If the Laplace transform of f (t) is F(s),
then

• ( ) ( )df t
L sF s f (0 )

dt
+ 

= − 
 

• ( ) ( ) ( ) ( )
2

2
2

d f t
L s F s sf 0 f ' 0

dt
+ + 

= − − 
 

2) Initial value theorem
• 

t 0 s
lim f (t) limsF(s)
→ →∞

=

3) Final value theorem
•

t s 0
lim f (t) limsF(s)
→∞ →

=

The final value theorem gives the final
value (t→∞) of a time functions using
its Laplace transform and as such very
useful in the analysis of control systems.
However, if the denominator of sF(s)
has any root having real part as Zero or
positive, then the final value theorem is
not valid.
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1.4 TRANSFER FUNCTION 

The transfer function of a linear, time-
invariant, differential equation system is 
defined as the ratio of the Laplace 
transform of the output (response 
function) to the Laplace transform of the 
input (driving function) under the 
assumption that all initial conditions are 
zero. 
In control system the output (or response) 
is related to the input by a transfer function 

as defined earlier, i.e. ( )
( )

C s
G(s)

R s
= or 

C(s) R(s)G(s)=  
The output time response can be 
determined by taking inverse Laplace 
transform of relation of C(s).  
Note: 
• The open loop poles at origin in the

transfer function determine the type of 
the system. 

e.g. If 
( )( )3

1G(s)
s s 2 s 3

=
+ +

the number of open loop poles at origin 
is 3 hence the type of system is 3. 

• The highest power of s in the
denominator of the transfer function 
determines the order of the system. 

e.g. If 
( )( )3

1G(s)
s s 2 s 3

=
+ +

the power of s in the denominator is 5. 
Hence, the order of the system is 5. 

• Impulse response of the system is the
system output when input is impulse. If 
the input is specified as unit impulse at 
t = 0, then R(s) = 1 and the 
transformed expression for the system 
output, is,  
C(s) G(s)=  
Thus the output time response is, 

1 1L C(s) L G(s)− −=
or c(t) g(t)=  
The inverse Laplace transform of G(s) 
is, therefore, called the impulse 
response of a system or the transfer  

function of a system is the Laplace 
transform of its impulse response.  

• Step response of the system is the
system output when input is unit step 
signal. The impulse response of the 
system can obtained differentiating the 
step response. 
e.g. If step response is ( ) 2t

sc t e−= then 
the impulse response will be ( ) 2t

ic t 2e−= −

1.4.1 PROPERTIES OF TRANSFER 
FUNCTION 

1) The transfer function is defined only for
a linear time-invariant system. It is not
defined for nonlinear systems.

2) The transfer function between an input
variable and an output variable of a
system is defined as the Laplace
transform of the impulse response.
Alternatively, the transfer function
between a pair of input and output
variables is the ratio of the Laplace
transform of the output to the Laplace
transform of the input.

3) All initial conditions of the system are
set to zero.

4) The transfer function of a continuous –
data system is expressed only as a
function of the complex variables. It is
not a function of the real variable, time,
or any other variable that is used as the
independent variable. For discrete –
data systems modeled by difference
equations, the transfer function is a
function of z when the z-transform is
used.

1.4.2 PROCEDURE TO DETERMINE 
TRANSFER FUNCTION 

1) Formulate the equations for the system.
2) Take the Laplace transform of the

system equations assuming initial
conditions as zero.

3) Specify the system output and the input.
4) Take the ratio of the Laplace transform

of the output and the Laplace transform
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of the input which is nothing but the 
transfer function of system. 

1.4.3 TRANSFER FUNCTIONS OF 
CASCADED ELEMENTS 

Many feedback systems have components 
that load each other. Consider the system 
shown in Figure. Assume that ei is the input 
and eo is the output. The equations for this 
system are  

( )1 2 1 1 i
1

1 i i dt R i e
C

− + =∫

( )2 1 2 2 2
1 1

1 1i i dt R i i dt 0
C C

− + + =∫ ∫

2 0
1

1 i dt e
C

=∫
Taking the Laplace transforms of Equations 

( ) ( ){ } ( )1 2 1 1 i
1

1 I s I s R I s E (s)
C s

− + =

( ) ( ){ } ( ) ( )2 1 2 2 2
1 1

1 1I s I s R I s I s
C s C S

− + + 0=  

2 0
2

1 I (s) E (s)
C S

=

Eliminating I1(s) from above Equations and 
writing Ei(s) in terms of I2(s), we find the 
transfer function between Eo(s) and Ei(s) to 
be 

( )
( ) ( )( )

0

i 1 1 2 2 1 2

E s 1
E s R C s 1 R C s 1 R C s

=
+ + +

( ) ( )2
1 1 2 2 1 1 2 2 1 2

1
R C R C s R C R C R C s 1

=
+ + + +

The overall transfer function is not the 
product of ( )1 11/ R C s 1+ and ( )2 21/ R 1+C s . The 
reason for this is that, when we derive the 
transfer function for an isolated circuit, we 
implicitly assume that the output is 
unloaded. In other words, the load 
impedance is assumed to be infinite, which 

means that no power is being withdrawn at 
the output. 

1.4.4 TRANSFER FUNCTIONS OF 
NONLOADING CASCADED  ELEMENTS 

The two simple RC circuits, isolated by an 
amplifier as shown in Figure, have 
negligible loading effects, and the transfer 
function of the entire circuit equals the 
product of the individual transfer functions. 
Thus, in this case, 

( )
( ) ( ) ( )0

i 1 1

E s 1 K
E s R C s 1

=
+

( )
( )
( ) ( )( )

0

2 2 i 1 1 2 2

E s1 K=
R C s+1 E s R C s+1 R C s+1

Example:  
Find the transfer function of the network 
given below 

Solution:  
Transfer function of the network is 

( )
( )1

0E s
E s 1

1
RCs

=
+

1.5 BLOCK DIAGRAMS 

A block diagram of a system is a pictorial 
representation of the functions performed 
by each component and the flow of signals. 
Such a diagram depicts the 
interrelationships that exist among the 
various components. In a block diagram all 
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system variables are linked to each other 
through functional blocks.  
The functional block or simply block is a 
symbol for the mathematical operation on 
the input signal to the block that produces 
the output. The transfer functions of the 
components are usually entered in the 
corresponding blocks, which are connected 
by arrows to indicate the direction of the 
flow of signals.  
Note: 
• In block diagrams the comparison of

signals is indicated by summing
points.

• The point from where signal is taken for
feedback is called take-off point.

• The signal can travel only along the
direction of the arrow.

1.5.1 BLOCK DIAGRAM FOR OPEN LOOP 
SYSTEM 

Open-loop transfer function = 
C(s) G(s)
R(s)

=

1.5.2 BLOCK DIAGRAM FOR CLOSED 
LOOP SYSTEM 

Feed forward transfer function 

= 
C(s) G(s)
E(s)

=

For the system shown in above figure, the 
output C(s) and input R(s) are related as 
follows:  
Since  C(s) = G(s) E(s) 
E(s) = R(s) – B(s) 
= R(s) – H(s) C(s) 
Eliminating E(s) from these equations gives 
C(s) = G(s)[R(s) – H(s)C(s)] 

Or 
C(s) G(s)
R(s) 1 G(s)H(s)

=
+

The transfer function relating C(s) to R(s) is 
called the closed-loop transfer function. 
This transfer function relates the closed-
loop system dynamics to the dynamics of 
the feed forward elements and feedback 
elements. 
From Equation C(s) is given by 

G(s)C(s) R(s)
1 G(s)H(s)

=
+

Thus the output of the closed-loop system 
clearly depends on both the closed-loop 
transfer function and the nature of the 
input. 

1.5.3 BLOCK DIAGRAM REDUCTION 
TECHNIQUES 

To draw a block diagram for a system, first 
write the equations that describe the 
dynamic behavior of each component. Then 
take the Laplace transforms of these 
equations, assuming zero initial conditions, 
and represent each Laplace- transformed 
equation individually in block form. Finally, 
assemble the elements into a complete 
block diagram. 

Example 
Draw the block diagram for the RC circuit 
shown in the figure. 

Solution 
The equation for current in the circuit is 

1 0e ei
R
−

= … (I)

Its Laplace transform will be 
i 0E (s) E (s)I(s)

R
−

=
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Now the equation for output voltage is 

0

idt
e

C
= ∫ … (II)

Its Laplace transform will be

0
I(s)E (s)
Cs

=

Now, assembling these two elements the 
overall block diagram is 

1.5.4 BLOCK DIAGRAM 
TRANSFORMATIONS 

1) Interchanging the summing points: If
there is no block or take-off point
between 2 summing points, the
summing points can be interchanged
without affecting output.

≡ 

2) Merging the blocks in series: If there
is no take-off or summing points in
between blocks they can be merged into
single block. The transfer function of
resultant block will be product of
individual transfer functions.

≡ 

3) Merging the blocks in parallel: The
transfer function of the blocks in
parallel gets added algebraically.

≡ 

4) Shifting the summing points: The
summing point can be shifted before
the block or after the block using some
additional blocks.

≡ 

≡ 

6) Shifting the take-off point before the
block:

≡ 

7
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7) Shifting the take-off point after the
block:

≡ 

8) Shifting take-off point after summing
point:

≡ 

9) Shifting take-off point before
summing point:

≡ 

Example 
Consider the system shown in Figure. 
Simplify this diagram. 

Solution:  
By moving the summing point of the 
negative loop containing H2 outside the 
positive feedback loop containing H1, we 
obtain Figure.  

Eliminating the positive feedback loop 

Example:  
Find the transfer function from each input 
to the output C. 

Solution:  
Considering X(s)=0, the block diagram 
reduces to 
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( )
( )

1 2 3 5

2 5 5 2 5 5 2 3 5

C s G G G G 
R s 1 G G H G G H G G G

∴ =
+ + + +

Now, considering R(s) =0 

( )
( )

4 5 2

2 5 5 2 5 5 2 3 5

C s G G (1 G ) 
X s 1 G G H G G H G G G

+
∴ =

+ + + +

Example:  
Find the transfer function for the system 
whose block diagram representation is 
shown in Fig. 

Solution: 

1 2 4

2 4 1 2 1 1 34

3

3 25

G G (G G )C
R 1 H G (G G ) G G H G G (G G )

−
− + −

=
+ +

Example:  
Find closed loop transfer function of 
system shown in Fig. 

Solution: 

1 2 4 2

1 1

3

2 2 3

HG (G G )(1 G )C
R 1 G H H (G G )

+
=

+
++

1.6 SIGNAL FLOW GRAPHS 

A SFG may be defined as a graphical means 
of portraying the input – output 
relationships between the variables of a set 
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of linear algebraic equations. A linear 
system is described by a set of N algebraic 
equations: 

N

i kj k
k 1

y a y
=

=∑
j=1, 2,………, N 
These N equations are written in the form 
of cause – and – effect relations: 

( )
N

th th

k 1

j effect gain from k to j (k cause)
=

= ×∑ or 

simply 
output gain input= ×∑
Laplace transform equation 

( )
N

i kj k
k 1

y (s) G s Y (s)
=

=∑  j=1,2,………,N 

Note: 
• In a SFG signals can transmit through a

branch only in the direction of the
arrow.

• When constructing a SFG, junction
points, or nodes, are used to represent
variables.

• The modes are connected by line
segments called branches, according to
the cause – and – effect equations. The
branches have associated branch gains
and directions

1.6.1 DEFINITIONS OF SFG TERMS 

1) Input Node (Source): An input node is
a node that has only outgoing branches.

2) Output Node (Sink): An output node is
node that has only incoming branches.

3) Forward Path: A forward path is a path
that starts at an input node and ends at
an output node, and along which no
node is traversed more than once.

4) Loop: A loop is a path that originates
and terminates on the same node and
along which no other node is
encountered more than once.

5) Path Gain: The product of the branch
gains encountered in traversing a path
is called the path gain.

6) Forward-Path Gain: The forward-path
gain is the path gain of a forward path.

7) Non touching Loops: Two parts of a
SFG are non touching if they do not
share a common node.

1.6.2 SFG FROM BLOCK DIAGRAM 

An SFG can be drawn from given block 
diagram of a system following the steps: 

1) Name all the summing points & take-off
points.

2) Each summing point & take-off will
point will be a node of SFG.

3) Connect all the nodes with branches
instead of blocks & indicate the block
transfer functions as the gains of the
branches.

Example 
Draw signal flow graph from the given 
block diagram. 

Solution 
1) Represent the take off points &

summing points with nodes

2) Now connect the nodes with the
transfer functions of the blocks as the
gains

Example:  
As an exp. on the construction of SFG, 
consider the following set of algebraic 
equations: 

2 12 1 32 3y a y a y= +
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3 23 2 43 4y a y a y= +  

4 24 2 34 3 44 4y a y a y a y= + +

5 25 2 45 4y a y a y= +
Solution: 

1.6.3 MASON’S GAIN FORMULA FOR 
SIGNAL FLOW GRAPHS 

In many practical cases, we wish to 
determine the relationship between an 
input variable and an output variable of the 
signal flow graph. The transmittance 
between an input node and an output node 
is the overall gain, or overall transmittance, 
between these two nodes. 
Mason’s gain formula, which is applicable 
to the overall gain, is given by 

k k
k

1P P= ∆
∆∑

Where, Pk = path gain or transmittance of 
kth forward path 
∆ = determinant of graph 
= 1 – (sum of all individual loop gains) + 
(sum of gain products of all possible 

combinations of two non-touching loops)  – 
(sum of gain products of all possible 
combinations of three non touching loops) 
+… 

a b c d e f
a b,c d,e,f

1 L L L L L L ....= − + − +∑ ∑ ∑

a
a

L∑ = sum of all individual loop gains

b C
b,c

L L =∑ sum of gain products of all

possible combinations of two non touching 
loops. 

d e f
d,e,f

L L L =∑  sum of gain products of all

possible combinations of three non 
touching loops. 
∆k = Non –touching determinant to kth 
forward path cofactor of the kth forward 
path determinant of the graph with the 
loops touching the kth forward path 
removed, that is, the cofactor ∆k is obtained 
from ∆ by removing the loops that touch 
path Pk

1.6.4 TRANSFER FUNCTION OF 
INTERACTING SYSTEM 

A two-path signal-flow graph is shown in 
Fig. An example of a control system with 
multiple signal paths is a multi legged 
robot. 

The paths connecting the input R(s) and 
output Y(s) are 
Path 1: P1 = G1G2G3G4 and  
Path 2: P2 = G5G6G7G8. 
There are four self-loops: 
L1 = G2H2, L2 = H3G3, 
L3 = G6H6, L4 = G7H7. 
Loops L1 and L2 do not touch L3 and L4. 
Therefore the determinant is  
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Δ = 1 – (L1 + L2 + L3 + L4) + (L1L3 + L1L4 + 
L2L3 + L2L4). 
The cofactor of the determinant along path 
1 is evaluated by removing the loops that 
touch path 1 from Δ. Therefore we have 
L1 = L2 = 0 and Δ1 = 1 – (L3 + L4) 
Similarly, the cofactor for path 2 is 
Δ2 = 1 – (L1 + L2). 
Therefore the transfer function of the 
system is 

1 1 2 2P PY(s) T(s)
R(s)

∆ + ∆
= =

∆

1 2 3 4 3 4 5 6 7 8 1 2

1 2 3 4 1 3 1 4 2 3 2 4

G G G G (1 L L ) G G G G (1 L L )
1 L L L L L L L L L L L L

− − + − −
− − − − + + + +

1.6.5 TRANSFER FUNCTION OF 
COMPLEX SYSTEM 

Finally, we shall consider a reasonably 
complex system that would be difficult to 
reduce by block diagram techniques. A 
system with several feedback loops and 
feed forward paths is shown in Fig.  

The forward paths are 
P1 = G1G2G3G4G5G6,  
P2 = G1G2G7G6, 
P3 = G1G2G3G4G8, 
The feedback loops are 
L1 = -G2G3G4G5H2,  
L2 = -G5G6H1,  
L3 = -G8H1,  
L4 = -G7H2G2,  
L5 = -G4H4,  
L6 = -G1G2G3G4G5G6H3, 
L7 = -G1G2G7G6H3,  
L8 = -G1G2G3G4G8H3, 
Loop L5 does not touch loop L4 or loop L7; 
loop L3 does not touch loop L4; and all other 
loops touch. Therefore the determinant is 

Δ = 1 – (L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8) 
+ (L5L7 + L5L4 + L3L4) 
The cofactors are 
Δ1 = Δ3 = 1 and Δ2 = 1 – L5 = 1 + G4H4. 
Finally, the transfer function is  

1 2 2 3P P PY(s)T(s)
R(s)

+ ∆ +
= =

∆
Signal-flow graphs and Mason’s signal-flow 
gain formula may be used profitably for the 
analysis of feedback control systems, 
electronic amplifier circuits, statistical 
systems, and mechanical systems, among 
many other examples. 

1.6.6 OUTPUT NODES AND NON INPUT 
NODES 

The gain formula can be applied only 
between a pair of input and output nodes. 
Often, it is of interest to find the relation 
between an output-node variable and a non 
input-node variable. For example, to find 
the relation y7/y2, which represents the 
dependence of y7 on y2; the latter is not an 
input. 
Let 𝑦𝑦𝑖𝑖𝑖𝑖 be an input and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 be an output 
node of a SFG. The gain 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜/𝑦𝑦2, where 𝑦𝑦2 is 
not an input, may be written as 

in out

in 2

k k  from y to y

out out in

k k  from y to y2 2 i

 

 n

P |
y y / y

P |y y / y
∆=

∆

∆

∆

=

∑

∑

Since  is independent of the inputs and 
the outputs, 

in out

in 2

k k from y to yout

2 k k from y t o 

 

y

P |y
y P |

∆

∆
= ∑
∑

Notice that  does not appear in the last 
equation 

Example: 

∆

∆
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From the SFG in Fig. The gain between y2 
and y7 is written 

( )
[ ]

1 2 3 4 1 5 3 27 7 1
12

2 2 1 3 2 4 3 2 4

G G G G G G 1 G Hy y / y P 1
y y / y 1. 1 G H H G H H

+ +
= = =

+ + +

Example:   
Consider the SFG in Fig. above, the 
following input – output relations are 
obtained by use of the gain formula: 

3 2 4 3 2 42

1

1 G H H G H Hy
y

+ + +
=

∆

( )1 2 44

1

G G 1 Hy
y

+
=

∆

( )1 2 3 4 1 5 3 26 7

1 1

G G G G G G 1 G Hy y
y y

+ +
= =

∆
Where 

1 1 3 2 1 2 3 3 4 1 3 1 2

1 1 4 3 2 4 1 2 3 3 4 1 3 1 2 4

1 G H G H G G G H H G G H H
+G H H G H H G G G H H G G H H H
∆ = + + + + +

+ + +
Example 
Find the no. of forward paths, individual 
loops and non-touching pair in following  
SFGs 

Example 
Consider the system shown in Figure. 

A signal flow graph for this system is 
shown in Figure. Let us obtain the closed 
loop transfer function C(s)/R(s) by use of 
Mason’s gain formula. 

In this system there is only one forward 
path between the input R(s) and the output 
C(s). The forward path gain is P1 = G1G2G3 
From figure, we see that there are three 
individual loops. The gains of these loops 
are  
L1 = G1G2H1 
L2 = G2G3H2 
L3 = G1G2G3 
Note that since all three loops have a 
common branch, there are no non touching 
loops. Hence, the determinant ∆ is given by 
∆ = 1 – (L1 + L2 + L3) 
= 1 – G1G2H1 + G2G3H2 + G1G2G3 
The cofactor ∆1 of the determinant along 
the forward path connecting the input node 
and output node is obtained from ∆ by 
removing the loops that touch this path. 
Since path P1 touches all three loops, we 
obtain 
∆1 = 1 
Therefore, the overall gain between the 
input R(s) and the output C(s), or the 
closed loop transfer function, is given by 

1 1PC(s) P
R(s)

∆
= =

∆

1 2 3

1 2 1 2 3 2 1 2 3

G G G
1 G G G G G G G G G

=
+ + +

Which is the same as the closed loop 
transfer function obtained by block 
diagram reduction. Mason’s gain formula 
thus gives the overall gain C(s)/R(s) 
without a reduction of the graph. 

Example:  
Draw signal flow graphs for 

1
2 1

dx(a) x a
dt

 =  
 

2
3 1

3 12

d x dx(b) x x
dt dt

= + −

4 3(c) x x dt= ∫
Solution: 
a)
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b) 

c) 

Example 
Find C/R for the control system given in 
Fig. 

Solution: 

The signal flow graph is given in Fig. 
The two forward path gains are  
P1 = G1G2G3 and P2 = G1G4.  
The five feedback loop gains are  
P11 = G1G2H1,  
P21 = G2G3H2,  
P31 = -G1G2G3,  
P41 = G4H2,  
and P51 = -G1G4.  
Hence 

( )11 21 31 41 51

1 2 3 1 2 1 2 3 2 4 2 1 4

1 P P P P P
1 G G G G G H G G H G H G G

∆ = − + + + +

= + + + − +

1 2and 1
Finally,

∆ = ∆ =

1 2 3 1 41 1 2 2

1 2 3 1 2 1 2 3 2 4 2 1 4

G G G G GP PC
R 1 G G G G G H G G H G H G G

+∆ + ∆
= =

∆ + − − − +

Example 
Find C/R for the following system using 
Mason’s gain rule 

Solution 
Forward Paths 
P1 = G1G2 
P2 = G4 
P3 = G7G8 
P4 = G1G5G8 
P5 = G7G6G2 
Loops 
L1 = G9 
L2 = G3 
L3 = G5G6 

( )3 9 5 6 9 3G G G G G G∆ = + + +

1 91 G∆ = −

( )2 9 3 5 6 9 31 G G G G G G∆ = − + + +

3 31 G∆ = −

4 1∆ =  

1 1 2 2 3 3 4 4 5 5P P P P PT ∆ + ∆ + ∆ + ∆ + ∆
≈

∆
( ) ( ) ( )1 2 9 4 9 3 5 6 9 3 7 8 3 1 5 8

3 9 5 6 9 3

G G 1 G G 1 G G G G G G G G 1 G G G G
1 G G G G G G

− + − − − + + −
=

− − − +

1.7 MATHEMATICAL MODELLING 

A set of mathematical equations, describing 
the dynamic characteristics of a system is 
called mathematical model of the system. 

1) Series RLC circuit

Applying KVL 

m
di 1iR L idt v
dt c

+ + =∫
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But dqi
dt

=

2

m2

d q dq qL R v
dt dt v

∴ + + =

2) Parallel RLC circuit

Applying KCL 
v 1 dvvdt c i
R L dt
+ + =∫

dv
dt
φ

=

Where, φ = magnetic flux 
2

2

d 1 dc i
dt R dt L
φ φ φ
+ + =

3) Translation system
a. Mass

2

2

d xF M
dt

=

b. Damper element

dxF f
dt

=

c. Spring

F = Kx 

At Balance 
2

2

dx d xF Kx f M
dt dt

− − =

2

2

d x dx M f Kx F
dt dt

∴ + + =

4) Rotational system
a. Inertia

2

2

dT J
dt
θ

=

b. Damper element
dT f
dt
θ

=

c. Spring twisted
T = K
Mathematical model

2

2

d dT f k J
dt dt
θ θ

− − θ = :

2

2

d dJ f k T
dt dt
θ θ
+ + θ =

1.7.1 ANALOGY 

Example 
Consider the mechanical system shown in 
Fig. (a) and its electrical circuit analog 
shown in Fig.(b). The electrical circuit 

θ
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analogy is a force-current analogy as 
outlined in Table. The velocities, v1(t) and 
v2(t), of the mechanical system are directly 
analogous to the node voltages v1(t) and 
v2(t) of the electrical circuit. The 
simultaneous equations, assuming the 
initial conditions are zero, are 

Figure: (a) Two-mass mechanical system 
(b) Two mode electric circuit analog C1 = 
M1, C2 = M2, L = 1/K, R1 = 1/b1, R2=1/b2 

( )1 1 1 2 1 1 2M sV (s) b b V (s) b V (s) R(s)+ + − =

( ) 2
2 2 1 2 1

V (s)M sV (s) b V (s) V (s) k 0
s

+ − + =

These equations are obtained using the 
force equations for the mechanical system 
of Fig(a). Rearranging Eqs., we obtain 

( )( )1 1 2 1 1 2M s b b V (s) ( b )V (s) R(s)+ + + − =

1 1 2 1 2
k( b )V (s) M s b V (s) 0
s

 − + + + = 
 

1.7.2 SENSITIVITY OF CONTROL 
SYSTEMS TO PARAMETER VARIATIONS 

The first advantage of a feedback system is 
that the effect of the variation of the 
parameters of the process, G(s), is reduced. 
This illustrates the effect of parameter 
variations; let us consider a change in the 
process so that the new process is G(s) + 
ΔG(s). Then in the open-loop case, the 
change in transform of the output is  

Y(s) G(s)R(s)∆ = ∆  
In the closed-loop system, we have 

( )
G(s) G(s)Y(s) Y(s) R(s)

1 G(s) G(s) H(s)
+ ∆

+ ∆ =
+ + ∆

Then the change in the output is 

( )( )
G(s)Y(s) R(s)

1 GH(s) GH(s) 1 GH(s)
∆

∆ =
+ + ∆ +

When GH(s) >> ΔGH(s), as is often the case, 
we have  

[ ]
G(s)Y(s) R(s)

1 GH(s)
∆

∆ =
+

The change in the output of the closed-loop 
system is reduced by the factor [1 + GH(s)], 
which is usually much greater than one 
over the range of complex frequencies of 
interest. 
These are the greatest system complexity, 
need much larger forward path gain and 
possibility of system instability (it means 
undesired/ persistent oscillations of the 
output variable). 

1.8 SENSITIVITY 

The sensitivity T
GS  is the ratio of percentage 

change in T to the percentage change in G. 
Where, T – Transfer function 
G- Forward path gain 

i.e. T
G

T / T T GS
G / G G T
∂ ∂

= = ×
∂ ∂

a) Open loop system

CT G
R

= =

T 1
G
∂

=
∂

T
G

T G GS 1 1
G T G
∂

= × = × =
∂

Hence open loop sensitivity is unity. 
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b) Closed loop system

GT C / R
1 GH

= =
+

( )
( ) ( )2 2

1 GH 1 GHT 1
G 1 GH 1 GH

+ −∂
= =

∂ + +

( )
( )T

G 2
T G 1 GS 1 GH
G T G1 GH
∂

⇒ = × = +
∂ +

T
G S

G
 1

1 H
=

+
∴

means ( ) ( )T T
G Gclosedloop openloop

S S<

Hence closed loop system is lesser 
sensitive to parameter variation hence 
closed loop system is better. 
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Q.1  An electrical system and its signal-
flow graph representations are 
shown in the figure (a) and (b) 
respectively. The values of G2 and H, 
respectively are 

a) 
( ) ( ) ( )

3 3

2 3 4 1 3

Z (s) Z (s),
Z s Z s Z (s) Z s Z (s)

−
+ + +

b)  
( ) ( ) ( )

3 3

2 3 4 1 3

Z (s) Z (s),
Z s Z s Z (s) Z s Z (s)

− −
− + +

c) 
( ) ( ) ( )

3 3

2 3 4 1 3

Z (s) Z (s),
Z s Z s Z (s) Z s Z (s)+ + +

d) ( )
( ) ( ) ( )

( )
( ) ( )

3 3

2 3 4 1 3

–Z s Z s
,

Z s Z s Z s Z s Z s− + +

          [GATE -2001] 

Q.2 The open loop DC gain of a unity 
negative feedback system with 
closed –loop transfer function 

2

s 4
s 7s 13

+
+ +

 is 

a) 4
13

b) 4
9

c) 4 d)13 
[GATE -2001] 

Q.3 A system described by the following 
differential equation 

2

2

d y dy3 2y x(t)
dt dt

+ + = is initially at 

rest. For input ( )t 2u(t)= , the output
y(t) is 
a) ( )t 2t1 2e e u(t)− −− +

b) ( )t 2t1 2e 2e u(t)− −+ −

c) ( )t 2t0.5 e 1.5e u(t)− −+ +

d) ( )t 2t0.5 2e 2e u(t)− −+ +

[GATE -2004] 

Q.4 Despite the presence of negative 
feedback, control systems still have 
problems of instability because the  
a) components used have 

nonlinearities
b) dynamic equations of the

systems are not known exactly
c) mathematical analysis involves

approximations.
d) system has large negative phase

angle at high frequencies
[GATE -2005] 

Q.5 In the system shown below, 
( ) ( )x t sin t u(t)= . In steady –state,

the response y(t) will be  

a) 1 πsin t-
42

 
 
 

         b) 1 πsin t+
42

 
 
 

 

c) t1 e sin t
2

− d) sin t cos t−

[GATE -2006] 

Q.6 The unit–step response of a system 
starting from rest is given by 
( ) 2tc t 1 e−= − for t 0≥ . The transfer

function of the system is  

GATE QUESTIONS(EC)(Basics of Control Systems) 
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a) 1
1 2s+

b) 2
2 s+

c) 1
2 s+

d) 2s
1 2s+

          [GATE -2006] 

Q.7 The unit   impulse response of a 
system is ( ) th t e , t 0−= ≥ . For this
system, the steady- state value of 
output for unit step input is equal to  
a)-1 b)0 
c)1 d)∞ 

          [GATE -2006] 

Q.8 The frequency response of a linear, 
time–invariant system is given by 

( ) 5H f = .
1+j10πf

The step response

of the system is 

a) ( ) ( )-5t5 1-e u t b) ( )
t-
55 1-e u t

 
 
 

c) ( )-5t1 1-e u(t)
5

) d) 
( )

1
s+5 (s+1)

          [GATE -2007] 

Q.9 A linear, time–invariant, causal 
continuous time system has a 
rational transfer function with 
simple poles at 2= −s and 4= −s  , 
and one simple zero at 1.= −s A unit 
step u(t) is applied at the input of 
the system. At steady state, the 
output has constant value of 1 .The 
impulse response of this system is  
a) ( ) ( )exp -2t +exp -4t u(t)  
b) ( ) ( )4exp 2t 12exp 4t exp( t) u(t)− − + − − −  

c) ( ) ( )-4exp -2t +12exp -4t u(t)  
d) ( ) ( ) ( )-0.5exp -2t +1.5exp -4t u t  

          [GATE -2008] 

Q.10  A system with the transfer function 
( )
( )

Y s s
X s s p

=
+

 has an output 

( ) cos=y t  2t
3
π − 

 
 for the input 

signal ( )x t = pcos  2t
3
π − 

 
 Then, the 

system parameter ‘p’ is 

a) 3 b) 2
3

c)1 d) 3
2

[GATE -2010] 

Q.11  A system with transfer function 

( ) ( )( )
( )( )( )

2s +9 s+2
G s =

s+1 s+3 s+4
is excited sin 

(ωt). 

The steady-state output of the 
system is zero at 
a)ω =1 rad/s b)ω =2 rad/s 
c)ω =3 rad/s d)ω =4 rad/s 

[GATE-2012] 

Q.12  Negative feedback in a closed-loop 
control system DOES NOT 
a) reduce the overall gain
b) reduce bandwidth
c) improve disturbance rejection
d) reduce sensitivity to parameter
variation 

         [GATE-2015-01] 

Q.13  For the system shown in the figure, 
Y(s)/X(s)=_________ 

        [GATE-2017-02] 
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ANSWER  KEY: 
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Q.1 (c) 
From KVL in both loops In first loop. 

( ) ( ) ( ) ( ) ( )i 1 1 1 2 3V s I s Z s I s I s Z (s) = + − 
( ) ( ) ( ) ( ) ( )i 1 1 3 2 3V s I s Z s Z s I s Z (s) = + − 

( )
( ) ( ) ( ) ( )

( ) ( )
i 2 3

1
1 3 1 3

V s I s Z (s)
I s

Z s Z s Z s Z s
= −

+ +
...(i) 

In second loop 
( ) ( ) ( ) ( ) ( )2 1 3 2 2I s I s Z s I s Z s − + 
( ) ( )2 4I s Z s 0+ =  

( ) ( ) ( ) ( )( )2 2 3 4I s Z s Z s Z s+ +

( )1 3I s .Z (s)=

( ) ( ) ( )
32

2
1 2 3 4

Z (s)I (s)G
I (s) Z s Z s Z s

= =
+ + +

From SFG, ( )1I s
( )i 1 2VG (s) I s H(s)= +  

( ) 3
1 i 2

1 3 1 3

Z1I s V I
Z Z Z Z

= +
+ +

From (i) 
3

1 3

ZH
Z Z

∴ =
+

(comparing above  two equations ) 

Q.2 (b) 

( )
G(s)CLTF

1 G S H(S)
=

+

2

s 4
S 7s 13

+
=

+ +
( ) 21 G s H(s) S 7s 13

G(s) s 4
+ + +

=
+

H(s)=1 for unity feedback 
21 S 7s 13 1

G(s) s 4
+ +

= −
+

 

21 S 6s 9
G(s) s 4

+ +
=

+

∴ 2

s 4G(s)
S 6s 9

+
=

+ +
For D.C.  s = 0  

∴ G(s) = open loop gain 4
9

=

Q.3 (a) 
2

2

d y dy3 2y x(t)
dt dt

+ + =

( ) ( ) ( )2s Y s 3sY s 2Y s X(s)+ + =

( )x t 2u(t)=

( ) 2X s
S

=

( ) ( )2 2s 3s 2 Y s
S

∴ + + =

( ) ( )
2Y s

s s 2 (s 1)
=

+ +

( )
2 A B C

s s 2 (s 1) S s 2 s 1
= + +

+ + + +

( ) ( ) ( )2 A s 2 s 1 Bs s 1= + + + +

( )C s 2 s+ +
s 0,2 2A A 1= = ⇒ =  
s 1,2 C C 2= − = − ⇒ = −
s 2,2 2B B 1= = ⇒ =   

( ) 1 1 2Y s
S S 2 S 1

= + −
+ +

( ) 2t ty t 1 e 2e u(t)− − + − 

Q.4 (d) 

Q.5 (a) 
( ) ( )y t x t *h(t)=

( ) ( )Y s X s *H(s)=

( ) 1 1H jω 45°
s 1 2

∠= = −
+

 

1 π
42

∠= −

EXPLANATIONS 
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( ) ( )x t sint u(t)=

( ) 1 πy t sin t
42

 ∴ = − 
 

Q.6 (b) 

( ) 1 1 2C s
S S 2 s(s 2)

= − =
+ +

( ) ( )1 C(s) 2R s H s
S R(s) s 2

= = =
+

Q.7 (c) 
( ) th t e−=

( ) 1H s
S 1

=
+

( ) 1R s
S

=

Output  ( ) ( ) 1 1H s .R s .
(S 1) S

= =
+

1 A B
S(S 1) S S 1

= +
+ +

( )1 A s 1 Bs= + +
s 0,1 A= =
s 1,1 B= − = −  

( )t1 1Output 1 e u(t)
S S 1

−∴ = − = −
+

When t=∞at steady state.  Output =1 

Q.8 (b) 

( ) 5H f
1 j10πf

=
+

( ) 5 5 1H s 111 5S s5 s
55

= = =
+   ++ 

 

Step response 1 1
1S s
5

=
 + 
 

1 1 A B* 11S S ss
55

= +
  ++ 
 

1A s Bs 1
5

 ⇒ + + = 
 

When s 0,A 5= =

When  1s ,B 5
5
−

= = −

( ) 5 5Y s 1S s
5

= −
+

( )
t
5y t 5 1 e u(t)

− 
⇒ = − 

 

Q.9 (c) 
Transfer functions, 

( ) ( )
K(s 1)H s

s 2 (s 4)
+

=
+ +

Input, ( ) 1R s
s

=

Output ( ) ( ) ( )C s R s H s=

Given: ( )
s 0
lims C s 1
→

=  

Or 
( )s 0

s.K(s 1)lim 1
s s 2 (s 4)→

+
=

+ +
 

Or K 1
8
=

K 8⇒ =

( ) ( )
8(s 1)H s

s 2 (s 4)
+

=
+ +

4 12
S 2 S 4

= +
+ +

( ) ( )2t 4th t 4e 12e u(t)− −= − +

Which is also the required impulse 
response of the system. 

Q.10 (b) 
Phase difference between input and 
output, 

π π πΦ 30°
3 2 6

 = − − − = = 
 

And  ω 2rad / sec=  
From the transfer function, 

1 ωΦ 90° tan
p

−= −

1 290° tan 30°
p

−− =
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Q.11 (c) 
For sinusoidal excitation 
s jω=  

( )G jω∴

( )( )
( ) ( ) ( )

2ω 9 jω 2
jω 1 jω 3 jω 4

− + +
=

+ + +
For zero steady –state output 

( )G jω 0=

( )
( ) ( ) ( )

2 2

2 2 2

w 9 w 4

w 1 w 9 w 16

− + +
=

+ + +

For zero steady-state output 
⇒ nω 9=
⇒ ω 3rad / sec=
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Q.1 The equivalent of the block diagram 
in the figure is given as 

a) 

b) 

c) 

d) 

[GATE -2001] 

Q.2  The signal flow graph of a system is 
shown in the figure. The transfer 

function  C(s)
R(s)

 of the system 

a) 2

6
S 29s 6+ +

b) 2

6s
S 29s 6+ +

c) ( )
2

s s 2
S 29s 6

+
+ +

d) ( )
2

s s 27
S 29s 6

+
+ +

          [GATE -2003] 

Q.3 Consider the signal flow graph 
shown in the figure. The gain x5/x1 is  

a) 1 (be cf dg)
abc

− + +

b) bedg
1 (be cf dg)− + +

c)
( )

abcd
1 be cf dg bedg− + + +

d) ( )1 be cf dg bedg
abcd

− + + +

          [GATE -2004] 

Q.4 The input –output transfer function 
of a plant  H(s) = 100

s(s+10)2 .The plant 
is placed in a unity negative 
feedback configuration as shown in 
the figure below. 

The signal flow graph that DOES 
NOT model the plant transfer 
function H(s) is  

a)

GATE QUESTIONS(EC)(Block Diagram & SFG) 
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b) 

c) 

d) 

[GATE -2011] 

Q.5 The signal flow graph for a system is 
given below. The transfer function 
Y(s)
U(s)

 for this system is given as 

a) 2

s + 1
5s + 6s + 2

b) 2

s +1
s + 6s + 2

c) 2

s + 1
5s + 4s + 2

d) 2

1
5 6 2+ +s s

[GATE-2013] 

Q.6 For the following system, 

When ( )1X s 0= , the transfer 

function 
2

y(s)
x (S)

 is 

a) 2

s 1
s
+ b) 1

s 1+

c) s 2
s(s 1)
+
+

d) s 1
s(s 2)

+
+

 [GATE-2014] 

Q.7 Consider the following block 
diagram in  the figure. 

The transfer function C(S)
R(S)

 is  

a) 1 2

1 2

G G
1 G G+

b) 1 2 1+G G G 1+

 c) 1 2 2G G G 1+ +  d) 1

1 2

G
1 G G+

 [GATE-2014] 

Q.8 The block diagram of a feedback 
control system is shown in the 
figure. The  overall closed-loop 
gain G of the system  is  

a) 1 2

1 1

G G
1 G H

G
+

=

b) 1 2

1 2 1 1

G G
1 G G

G
G H+ +

=

c) 1 2

1 2 1

G G
1 G

G
G H+

=

d) 1 2

1 2 1 2 1

G G
1 G G G H

G
G+ +

=

 [GATE-2016] 
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ANSWER  KEY: 
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Q.1  (d) 
Take off point is moved after 2G so

2/G . 

Q.2  (d) 
1P 1=  

1
3 24 S 271
S S S

∆
+

= + + =

( ) ( )
1 1PG s

1 loopgain pairofnon touchingloops
=

− + −
∆

1 2 3
3 24 2L , L , L

S S S
− − −

= = =

1 3L and L are non –touching . 

( )
( )s 27

SG s
3 24 2 2 31

S S S S S

+

∴ =
− − − − − − + × 

 
( )

2

2

s 27
C(s) s(s 27)S

29 6 R(s) S 29s 61
S S

+
+

= =
+ ++ ×

Q.3 (c) 
1 1P abcd, 1= ∆ =  

1 2 3L be, L cf ,L dg= = =
Non-touching loops are 

1 3L &L bedg=  

( )
5

1

x abcd
x 1 be cf dg bedg

∴ =
− + + +

Q.4 (d) 
For option (d), 

3

2

Y(s) 100 / S
100U(s) 1
S

=
+

Which is not transfer function of 
H(s). 

Q.5 (a) 
No of forward path =2 

1 22 2

1 1P ,P
S S

= =

1 21; 1∆ = ∇ =  

1 2 2

4 2L ,L
5 S
− −

= =

3 4
2L 4,L

S
−

= − =

No non touching loops  
1 2 3 4k 1[L L L L ]∆ = + + +  

2

4 2 51 4
S S S

= + + + +

2 2

2

S 4s 2 4S 4s
S

+ + + +
=

2

2

5s 6s 2
S
+ +

=

2 2

2 2

2

1 1
s 1S S

5s 6s 2 5s 6s 2
S

+ +
= =

+ + + +

Q.6 (d) 

If  X1 (s) = 0 

2

Y(s) ;
X (s)

The block diagram becomes 

( )
2

1 1
s 1Y(s) s s

1 s s 2X (s) s(s 2)1 .
s (s 1) s 1

+
= = ⇒

+ ++
+ +

EXPLANATIONS 
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Q.7 (c)

 
By drawing the signal flow graph for 
the given block diagram  

Number of parallel paths are three 
Gains P1 = G1G2, P2 = G2, P3 =1  
By mason's gain formula, 

1 2 3 PC(S)   P
R(

P
S)

= + +  

1 2 2G G G 1⇒ + +

Q. 8 (b)  

1 2

1 2 1 1

G GY =
X 1+G G +G H
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Q.1 The transfer function of the system 

described by 
2

2

d y dy du 2u
dt dt dt

+ = +

with u is input and y as output is 

a) ( )
( )2

s 2
s s
+

+
b) ( )

( )2

s 1
s s
+

+

c) 
( )2

2
s s+

d) 
( )2

2s
s s+

           [GATE-2002] 

Q.2 A control system is defined by the 
following mathematical relationship 

( )
2

2t
2

d x dx6 5x 12 1 e
dt dt

−+ + = −

The response of the system as 
t →∞ is 
a) x 6= b) x 2=
c) x 2.4= d) x 2= −

           [GATE-2003] 

Q.3 A control system with certain 
excitation is governed by the 
following mathematical equation 

2
4t 5t

2

d x 1 dx 1 x 10 5e 2e
dt 2 dt 18

− −+ + = + +

The natural time constants of the 
response of the system are 
a) 2s and 5s            b)3s and 6s 
c) 4s and 5s            d)1/3s and 1/6s 

 [GATE-2003] 

Q.4 The block diagram of a control 
system is shown in figure. The 
transfer function G(s) =Y(s)/U(s) of 
the system is  

a) 1
s s18 1 1

12 3
  + +  
  

b) 1
s s27 1 1
6 9

  + +  
  

c) 1
s s27 1 1

12 9
  + +  
  

d) 1
s s27 1 1
9 3

  + +  
  

           [GATE-2003] 

Q.5 For a tachometer, if θ(t) is the rotor 
displacement in radians, e(t) is the 
output voltage and tK  is the 
tachometer constant in V/rad/sec, 

then the transfer function, E(s)
Q(s)

will 

be 

a) 2
tK s b) tK

s
c) tK s d) tK

    [GATE-2004] 

Q.6 For the block diagram shown in 

figure, the transfer function C(s)
R(s)

 is 

equal to 

GATE QUESTIONS(EE)(Basics of Control Systems) 
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 a) 
2

2

s 1
s
+ b) 

2

2

s s 1
s
+ +

c) 
2

2

s s 1
s
+ + d) 2

1
s s 1+ +

 [GATE-2004] 

Q.7 The unit impulse response of a 
second order under damped system 
starting from rest is given by 
c(t)=12.5 6te sin8t, t 0− ≥ The steady-
state value of the unit step response 
of the system is equal to  
a) 0 b) 0.25
c) 0.5 d) 1.0

[GATE-2004] 

Q.8 When subjected to a unit step input, 
the closed loop control system 
shown in the figure 

will have a steady state error of 
a) -1.0 b) -0.5
c) 0 d) 0.5

[GATE-2005] 

Q.9 The system shown in figure below 

Can be reduced to the form 

With 
a) ( )2

0 1 0 1 0 1X c s c ,Y 1 s a s a Z b s b= + = + + = +

b) ( )
0 1

0 12
0 1

c s cX 1, Y , Z b s b
s a s a

+= = = +
+ +

c) ( )
( )

1 0
1 0 2

1 0

b s b
X c s c ,Y , Z 1

s a s a
+

= + = =
+ +

 

d) 
( )1 0 1 02

1 0

1X c s c ,Y , Z b s b
s a s a

= + = = +
+ +

[GATE-2007] 
Q.10 A function y(t) satisfies the 

following differential equation: 

( ) ( )dy(t) y t t
dt

+ = δ

Where ( )δ t is the delta function.
Assuming zero initial condition, and 
denoting the unit step function by 
u(t), y(t) can be of the form  
a) te b) -te
c) te u(t) d) -te u(t)

           [GATE-2008] 

Q.11 The measurement system shown in 
the figure uses three sub-systems in 
cascade whose gains are specified as 

1 2G ,G  and
3

1
G

. The relative small 

errors associated with each 
respective subsystem 1 2G ,G and 3G
are 1 2ε ,ε  and 3ε  .The error 
associated with the output is: 

a) 1 2
3

1
+ +ε ε

ε
b) 1 2

3

.ε ε
ε

c) 1 2 3+ −ε ε ε d) 1 2 3+ −ε ε ε
[GATE-2009] 

Q.12 The response h(t) of a linear time 
invariant system to an impulse δ(t), 
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under initially relaxed condition is
( ) -t -2t=e +eh t . The response of this

system for a unit step input u (t) is 
a) ( ) -t -2tu t +e +e

b) -t -2t(e +e )u(t)
c) -t -2t(1.5-e -0.5e )u(t)
d) -t -2te δ(t)+e u(t)

[GATE-2011] 

Q.13 The transfer function 2

1

V (s)
V (s)

of the 

circuit shown below is 

a) 0.5s 1
s 1

+
+

b) 3s 6
s 2
+
+

c) s 2
s 1
+
+

d) s 1
s 2
+
+

[GATE-2013] 

Q.14 The signal flow graph for a system is 
given below. The transfer function 
Y(s)
U(s)

 for this system is given as 

a) 2

s+1
5s +6s+2

b) 2

s+1
s +6s+2

c) 2

s+1
5s +4s+2

d) 2

1
5s +6s+2

[GATE-2013] 

Q.15 The signal flow graph of a system is 
shown below. U(s) is the input and 
C(s) is the output  

Assuming, 1 1h b= and 0 0 1 1h b b a= − , 
the input-output transfer function, 

( ) C(s)G s
U(s)

= of the system is given

by 

a) ( ) 0 1
2

0 1

b s+bG s
s +a s+a

b) ( ) 1 0
2

1 0

a s aG s
a b s b

+
+ +

c) ( ) 1 0
2

1 0

b s bG s
a a s a

+
+ +

d) ( ) 0 1
2

0 1

a s aG s
a b s b

+
+ +

 [GATE-2014] 

Q.16 For the signal flow graph shown in 
the figure, which one of the 
following expressions is equal to the 

transfer function 
( )12 x s 0

Y(s)
X (s)

=

? 

a) 1

2 1

G
1 G (1 G )+ +

    b) 

2

1 2

G
1 G (1 G )+ +

c) 1

1 2

G
1 G G+

d) 2

1 2

G
1 G G+

 [GATE-2015] 
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Q.17 Find the transfer function Y(s)
X(s)

of 

the system given below: 

a) 1 2

1 2

G G
1 HG 1 HG

+
− −

b) 1 2

1 2

G G
1 HG 1 HG

+
+ +

c)
( )
1 2

1 2

G G
1 H G G

+
+ +

d) 
( )
1 2

1 2

G G
1 H G G

+
− +

[GATE-2015] 
Q.18 For the system governed by the set 

of equations:  
1 1 2

2 1

1

dx / dt 2x x u
dx / dt 2x u

y 3x

= + +
= − +
=

the transfer function Y(s)/U(s) is 
given by 
a) 3(s+1)/ ( 2s -2s+2)
b) 3(2s+1)/ ( 2s -2s+1)
c) (s+1)/ ( 2s -2s+1)
d) 3(2s+1) / ( 2s -2s+2)

 [GATE-2015] 

Q.19 For a system having transfer 
functionG(s) = −s+1

s+1
, a unit step 

input is applied at time t=0. The 
value of the response of the system 
at t=1.5 sec (round off to three 
decimal places) is ______. 

         [GATE-2017-01] 

Q.20 Match the transfer functions of the 
second-order systems with the nature 
of the systems given below. 

P. 2

15
s 5s 15+ +

 

Q. 2

25
s 10s 25+ +

R. 2

35
s 18s 35+ +

Nature of system 
I. Over damped 
II. Critically damped
III. Critically damped

a) P-I, Q-II, R-III
b) P-II, Q-I, R-III
c) P-III, Q-II, R-I
d) P-III, Q-I, R-II

[GATE-2018] 

Q.21 The number of roots of the 
polynomial 

7 6 5 4 3 2s s 7s 14s 31s 73s 25s 200+ + + + + + + in 
the open left half of the complex 
plane is 

a) 3 b) 4 c) 5 d) 6
[GATE-2018] 

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



 
 

 
 
 
 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
(a) (c) (b) (b) (c) (b) (d) (c) (d) (d) (c) (c) (d) (a) 
15 16 17 18  19 20 21 
(c) (b) (c) (a) 0.554  (c)  (a) 

ANSWER  KEY: 

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



Q.1 (a) 
2

2

d y dy du 2u
dt dt dt

+ = +

⇒ ( ) ( ) ( )2s Y s sY s sU s 2U(s)+ = +

∴ 
( )2

Y(s) s 2
U(s) s s

+
=

+

Q.2 (c) 
Taking (LT) on both sides 

( ) ( )2 1 16 5 12
2

s s s
s s

 + + × = − + 
24

( 2)s s
=

+

( ) ( )
24X(s)

s s 2 s 1 (s 5)
=

+ + +
Response at t →∞  
Using final value theorem 

( )
Lt Lt

x t sX(s)
t s 0

=
→ ∞ →

 

( ) ( )
Lt s 24

s 0 s s 1 s 2 (s 5)
×

=
→ + + +

= 2.4 

Q.3 (b) 
Natural time constant of the 
response depends only on poles of 
the system. 

( ) 2

C(s) 1T s
R(s) s s / 2 1/18

= =
+ +

( )2

18 1
18 9 1 6 1 (3 1)s s s s

= =
+ + + +

This is in the form 
1 2

1
(1 sT )(1 sT )

=
+ +

T0, T2 = 6sec, 3sec 

Q.4 (b) 
Integrator are represented as 1/s in 
S-domain 

As per the block diagram, the 
corresponding signal flow graph is 
drawn 

One forward path 2
1P 2 / s=

The individual loops are, 

1 2 3 2

3 12 18L ,L andL
s s s

= − = − = −

1L and 1L are non-touching loops 

1 2 2

36L L
s

=

The loops touches the forward path 
1 1∆ =  

The graph determinant is  
1 2 3 1 21 (L L L ) L L∆ = − + + +

2 2

3 12 18 361
s s s s

= + + + +

Applying mason’s gain formula 

( ) 1 1PY(s)G s
U(s)

∆
∆

= =

2

2

2 2

2 / s 2
3 12 18 36 s 15s 541
s s s s

= =
+ ++ + + +

( )
2 1

9 ( 6) 27 1 1
9 6
s ss s

= =
+ +   + +  

   

EXPLANATIONS 
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Q.5 (c) 

( )θ t  = rotor displacement in 
radians 

( ) dθω t
dt

= = angular speed in 

rad/sec 
Output voltage; te(t) = K (t)ω  

t
dθK
dt

= . 

Taking Laplace transform on both 

sides ( ) ( )tE s K sθ s= ⟹ t
E(s) K s
θ(s)

=

Q.6 (b) 
Method-1: Using block-diagram 
reduction technique. 
So, transfer function 

2

2

C(s) s s 1
R(s) s

+ +
= =

Method-2: Using signal flow graph 

Three forward paths. 

1 2 32

1 1 1 1 1P , P 1. &P 1
s s s s s

= = = = =

The no. of individual loop=0 
So graph determinant 1= ∆ =  
and 1 2 3 1= ∆ = ∆ =∆  
Applying Mason’s gain formula 

1 1 2 2 3 3P P PC(s)G(s)
R(s)

+ ∆ +
=

∆ ∆
=

∆
1
2 1s .1 .1 1.1

s
1

+ +
=

2

2

s s 1
s
+ +

=  

Q.7 (d) 
Transfer function of a system is the 
unit impulse response of the system. 

Transfer function ( )
( )

C s
R s

=

6t12.5e sin8t− =  

( )2 2

812.5
s 6 8

= ×
+ +

( )2 2

100
s 6 8

=
+ +

When input is unit step, ( ) 1R s
s

=

( )
( )2 2

1 100C s .
s s 6 8

=
+ +

Steady-state value of response, 
using final value theorem 

( )steady state

Lt
C C t

t ∞− =
→

Lt
s(s)

s 0
=

→
 

2 2

Lt 1 100s  . 1
s 0 s (s 6) 8

 
= = → + + 

 

Q.8 (c) 
Using signal flow grap 

Forward path gains 

( )1
2 2P 1

s 2 s 2
−

= − × =
+ +

And 2
3 2 2P .
s s 2 s(s 2)

= =
+ +

Individual loop 

1
3 2 6L 1
s s 2 s(s 2)

−
= − × × =

+ +
Loop touches forward paths, 
therefore, 

1 21and 1V V= =  

1D 1 L= −

( )s s 2 661
s(s 2) s(s 2)

+ +
= + =

+ +
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Using Mason’s gain formula, 
( )
( )

1 1 2 2Y s P Δ P Δ
R s Δ

+
=

( )

2 61 1
s 2 s(s 2)

s s 2 6
s(s 2)

− × + ×
+ +=

+ +
+

( )
( ) 2

Y s 6 2s
R s s 2s 6

−
=

+ +
For unit step input, R(s)=1/s 

( ) ( ) 2

6 2sY s R s .
s 2s 6

− =  + + 
Error =E(s)=R(s)-Y(s) 

( ) ( ) 2

6 2sR s R s
s 2s 6

− = −  + + 

( ) 2

6 2sR s 1
s 2s 6

− = − + + 

( )
2

2

1 s 4sE s
s s 2s 6
 +

=  + + 
Steady state value of error, using 
final value theorem 

ss s 0
e limsE(s)

→
=

2

2s 0

1 s 4slims .
s s 2s 6→

 +
=  + + 

2

2s 0

s 4slim 0
s 2s 6→

 +
= + + 

=  

Q.9 (d) 
The block-diagram can be redrawn 
as  

Single flow graph of the block-
diagram 

There are two forward paths. 
0

1 0 2

C P1 1P 1 c P
s s s

= × × × × =

1
2 1

C P1P 1 c 1 P
s s

= × × × × =

These are four individual loops 

1
1 1

a1L a
s s

= − × = −

0
2 0 2

a1 1L a
s s s

= × ×− = −

0
3 0 2

b P1 1L P b
s s s

= × × × =

1
4 1 2

b P1L b P
s s

= × × =

All the loops touch forward paths 
1 2 1∆ = ∆ =  

( )1 2 3 41 L L L L∆ = − + + +

0 01 1
2 2

a b Pa b P1
s s s s

= + + − −

Using Mason’s gain formula 
( )
( )

1 1 2 2C s P Δ P Δ
R s s

+
=

0 1
2

0 01 1
2 2

c P c P
s s
a b Pa b P1

s s s s

+
=

+ + − −
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( )
( ) ( ) ( )

0 1 s
2

0 1 0 0

C s c P c p
R s S a b S a b P

+
=

+ − + −

( )
( )

( ) ( )
( ) ( )

2
0 1 1 0

2
0 1 1 0

P c c s / s a s aC s
R s 1 b b s P/ s a s a

+ + +
=

− + + +

( ) ( )
( ) ( )

2
0 1 1 0

2
0 1 1 0

P c c s / s a s a

1 b b s P/ s a s a

+ + +
=

− + + +
… (i)

( )
( )

C s xyP
R s 1 yzP

=
−

… (ii)

Comparing eq.(i) and (ii), we get 
0 1

2
1 0

c c sxy
S a s a

+
=

+ +

0 1
2

1 0

b b syz
S a s a

+
=

+ +
Hence option (d) is correct. 

Q.10 (d) 
Taking (L.T.) on both sides 
( ) ( )Y s s 1 1+ =

( ) 1Y s
s 1

∴ =
+

Taking inverse laplace transform 
( ) tY t e u(t)−=

Q.11 (c) 
31 2

1 2 3
1 2 3

dGdG dG, &
G G G

=∈ =∈ ∈

Output 1 3
0

3

G G(y) x
G

=

where X=input in 
1 2 3y InG InG InG Inx= + − +

Differentiating both sides 
31 2

1 2 3

dGdG dGdy dx
y G G G x
= + − +

No error is specified in input so 
dx 0
x
=

1 2 3
dy
y
=∈ +∈ −∈ . 

Q.12 (c) 
Transfer function of system is 
impulse response of the system with 
zero initial conditions. 
Transfer function 

( ) ( )1 2tH s e e− −= = +

1 1
s 1 s 2

= +
+ +

( ) C(s) 1 1H s
R(s) s 1 s 2

 = = + + + 

( ) ( )1R s step input
s

= =

( ) ( ) ( )C s R s .H s=

( ) ( )
1 1 1 1 1
s s 1 s 2 S S 1 S S 2
 = + = + + + + + 

( ) 1 1 1 1 1C s
s s 1 2 s s 2

   = − + −   + +   
1.5 1 0.5
S S 1 S 2

= − −
+ +

Response ( ) ( )1C t C s−  = =  

1 1.5 1 0.5
s s 1 s 2

−  = − − + + 


( ) ( )t 2tC t (1.5 e )u0.5e t− −−= −

Q.13 (d) 

( )
( )

2

1

1RV s Cs
1 1V s R

Cs Cs

+
=

+ +

1 RCs
2 RCs
+

=
+

3 6

3 6

1 10 10 100 10 s 1 s
2 10 10 100 10 s 2 s

−

−

+ × × × +
= =

+ × × × +

Q.14 (a) 
No. of forward path =2 

1 22 2

1 1P ,P
S S

= =
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1 21; 1∆ = ∇ =  

1 2 2

4 2L ,L
5 S
− −

= =

3 4
2L 4, L

S
−

= − =

No non touching loops  
1 2 3 4k 1[L L L L ]∆ = + + +  

2

4 2 51 4
S S S

= + + + +

2 2

2

S 4s 2 4S 4s
S

+ + + +
=

2

2

5s 6s 2
S
+ +

=

2 2

2 2

2

1 1
s 1S S

5s 6s 2 5s 6s 2
S

+ +
= =

+ + + +

Q.15 (c) 
From the signal flow graph, 

( ) C(s)G s
U(s)

=

By mason's gain relation, 
Transfer function = 

 1 1 2 2P P+
=

∆ ∆ +…
∆

01
1 2

2

hhP ;P
S S

= =

1
1 2

a1 ; 1
s

 = + ∆ =  
∆       01

2

aaΔ=1+ +
s s

Transfer function = 
01 1
2

1 0
2

01 1 0
2

bh a1+ +
b s+bs s s =aa s +a s+a1+ +

s s

 
  

Q.16 (b)  
1 2P G=

[ ]1 2 1 1 21 G G G 1 G (1 G )∆ = − − − = + +

[ ]
1 1 2

1 2

P GTF
1 G 1 G

∆
+∆

= =
+

Q.18 (a) 

1
1 2

dx 2x x 4
dt

= + +

2
1

dx 2x 4
dt

= − +  

1y 3x=
Considering the standard equation  

ix AX BU= +
y Cx DU= +

1 1

2 2

x x2 1 1
[4]

x x2 0 1
      

= +      −      





 

1

2

x
y [30]

x
 

=  
 

Transform function  1C(SI A) B−−  

( ) [ ]
1

s 0 2 1 1
G s 3   0

0 s 2 0 1

−
      

= −      −      

[ ]
1s 2 1 1

3  0
0 s 1

−− −   
   
   

[ ] s 1 1
3   0

2 s 2 1
   
   − −   

2s 2s 2− +  

 2

s 11 [3  0]
2 s 2s s 2
+ 

=  − + −− +  
 

2

s 11 [3  0]
s 4s 2s 2
+ 

=  −− +  
 

2

3(s 1)
s 2s 2

+
=

− +

Q.19 0.554 

Q.20 (c) 

Option Characteristic 
Equation 

Damping 
Ratio ( )ξ

Damping 

P 2s 5s 15+ +  0.645ξ =  Under 
damping 

Q 2s 10s 25+ +  1ξ =  Critical 
damped 

R 2s 18s 35+ +  1.52ξ =  Over 
damped 
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Hence, the correct option is (C). 

Q.21 (a) 

Given: Characteristic equation, 
7 6 5 4 3 2s s 7s 14s 31s 73s 25s 200+ + + + + + +  

The R-H table is given by, 
7s  1 7 31 25 
6s  1 14 73 200 
5s -7 -42 -175 0 
4s  8 48 200 0 
3s 32 96 0 
2s  24 200 0 
1s  -170.67 0 
0s  200 

From the above table number of sign 
change in the first column is 4. So, the 
number of left hand pole are 
7 - 4 = 3. 

4 28s 48s 200 0+ + =  
2s x=  

28x 48x 200 0+ + =  
2x 6x 25 0+ + =  

x 3 j4= − ±  
2s 3 j4= − ±  
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Q.1 As shown in the figure, a negative 
feedback system has an amplifier of 
gain 100 with 10%±  tolerance in the 
forward path, and an attenuator of 
value 9/100 in the feedback path. 
The overall system gain in 
approximately: 

a)10±1% b)10 ±  2% 
c) 10 ±5% d) 10±10%

[GATE-2010] 

Q.2 The open- loop transfer function of a 

dc motor is given as
a

ω(s) 10=
V (s) 1+10s

. 

When connected in feedback as 
shown below, 

the approximate value of aK  that 
will reduce the time constant of 
closed loop system by one hundred 
times as compared to that of the 
open- loop system is  

 
 

a) 1 b) 5
c) 10 d) 100

[GATE-2013] 

Q.3 The closed-loop transfer function of 

a system is 
( )2

4(s)
s 0.4s 4

=
+ +

 . The 

steady state error due to unit step 
input is   

[GATE-2014] 

Q.4 The block diagram of a system is 
shown in the figure 

If the desired transfer function of 

the system is 2

C(s) s
R(s) s s 1

=
+ +

then

G(s) is 
a)1 b)s 

c)1/s d) 3 2

s
s s s 2

−
+ − −

 [GATE-2014] 

 
 

1 2 3 4 
(a) (c) (0) (b) 

ANSWER  KEY: 

GATE QUESTIONS(EE)(Block Diagram & SFG) 
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Q.1 (a) 
G 100 10%= ±

G 10%or0.1
G
∆

=

H 9 /100=  
Overall gain 

GT
1 GH

=
+

…(i) 

100T 1091 100
100

= =
+ ×

 

( )
( ) ( )2 2

1 GH GHdT 1
dG 1 GH 1 GH

+ −
= =

+ +

( )2
dGdT

1 GH
=

+
…(ii) 

( )
T G 1

T G 1 GH
∆ ∆

= ×
+

T 110 %9T 1 100
100

∆
= ×

+ ×
 

So, overall system gain 10 1%= ±  

Q.2 (c) 

( ) ( ) 10KG s H S O.L.T.F
1 10s

=
+

τ 10sec=  
10C.L.T.F τ 0.1

100
= =

10KC.L.T.F
10K 1 10s

=
+ +

10Kτ 0.1 K 10
10K 1

= = ⇒ ≅
+

 

Q.3 (0) 
Steady state error for Type-1 for 
unit step input is 0.  

Q.4 (b) 

If G(s) = S 

2

C(s) S
R(s) s s 2

=
+ +

EXPLANATIONS 
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Q.1 The torque-speed curve of a 
constant field armature controlled 
DC servomotor is shown in the 
figure. The armature resistance in Ω 
and torque constant in Nm/A of the 
motor respectively are 

a) (1.76,0.68) b) (1.76,0.85)
c) (2.00,0.25) d) (0.01, 0.81)

[GATE-2004] 

Q.2 The rotor of the control transformer 
of a synchro pair gives a maximum 
voltage of 1.0 V at a particular 
position of the rotor of the control 
transmitter. The transmitter rotor is 
now rotated by 30o anticlockwise 
keeping the transformer rotor 
stationary. The transformer rotor 
voltage for this position is  
a) 1.0 V b) 0.566 V
c) 0.5 V d) 0 V

[GATE-2010]  

Q.3 The transfer function of a Zero – 
Order-Hold system with sampling 
interval T is  

a) ( )Ts1 1 e
s

−− b) ( )2Ts1 1 e
s

−−

c) Ts1 e
s

− d) Ts
2

1 e
s

−

[GATE-2012]  

Q.4 Unit step response of a linear time 
invariant (LT) system is given by 
y(t) = (1 – e-at)u(t). Assuming zero 
initial condition, the transfer 
function of the system is 

[GATE-2012] 

a) 1
1s +

b) 2
( 1)( 2)s s+ +

c) 1
( 2)s +

d) 2
( 2)s +

 

1 2 3 4 
(c) (b) (a) (d) 

ANSWER KEY: 

GATE QUESTIONS(IN)(Basics of Control Systems) 

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



Q.1 (c) 

We know 
( ) ( ) ( )m m aT t K t i t= φ

( ) ( )m i aT t K i t=  (∵ ϕ = constant) 
Among the options only the 
armature resistance 

aR 2.00 = Ω  will satisfy the torque 
equation. 

( ) a
a

a

e 4i t 2.0Amp
R 2

= = =

( )
m

i
a

T (t) 0.5K N m/A 0.25N-m/A
i t 2.0

= = − =

iK 0.25N m/A∴ = −  

Q.2 (b) 
r mv v cos= φ  
1.0 cos30=  
rv 0.866v=

Q.3 (a) 
The transfer function of a zero-
order hold system having a 

sampling interval T is ( )Ts1 1 e
s

−− . 

Q.4 (d) 

Given unit step response 

2t

2t 2t

2t

2t

y(t) (1 e )u(t)
dimpulse response h(t) y(t)
dt

h(t) (t) e (t) 2e u(t)
2e u(t)

L{h(t)} Transfer function
2T.F. L{2e 4(t)}

s 2

−

− −

−

−

= −

=

= δ − δ +

=
=

= =
+

EXPLANATIONS 
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Q.1 The signal flow graph 
representation of a control system is 
shown below. The transfer function 
Y(s)
R(s)

 is computed as 

a) 1
S

b) 
( )

2

2

S 1
S S 2

+
+

c) 
( )2

2

S S 1
S 2

+

+
d) 11−

S
           [GATE-2006] 

Q.2  A feedback control system with high 
K, is shown in the figure below: 

Then the closed loop transfer 
function is. 
a) Sensitive to perturbations in

G(s) and H(s)
b) Sensitive to perturbations in G(s)

and but not perturbations H(s)
c) Sensitive to perturbations in

H(s) and but not to
perturbations G(s)

d) Insensitive to perturbations in
G(s) and H(s)

[GATE-2007] 

Q.3 The signal flow graph of a system is 
given below. 

The transfer function (C/R) of the 
system is  

a) ( )
( )

1 2 1 3

1 2 2

G G +G G
1+G G H

b) ( )
( )

1 2 1 3

1 1 1 2 2

G G +G G
1-G H +G G H

c) ( )
( )

1 2 1 3

1 1 1 2 2 1 3 2

G G +G G
1-G H +G G H +G G H

d) ( )
( )

1 2 1 3

1 1 1 2 2 1 3 2 1 2 3 1

G G +G G
1-G H +G G H +G G H +G G G H

[GATE-2011] 

Q.4 The signal flow graph for a system is 
given below. The transfer function 
Y(s)
U(s)

 for this system is given as 

a) 2

1
5 6 2

+
+ +
s

s s
b) 2

1
6 2
+

+ +
s

s s

c) 2

1
5 4 2

+
+ +
s

s s
d) 2

1
5 6 2+ +s s

[GATE-2013] 

GATE QUESTIONS(IN)(Block Diagram & SFG) 
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Q.1  (a) 

Q.2 (c) 

( )( )
T
G

1S 0
1 KG s .H(s)

= →
+

as k is 

high 

( )
( )( )

T
H

kG S .H(s)
S 1

1 KG s .H(s)
−

= → −
+

Q.3  (c) 

1 1 2 2 1 3P G G ;P G G= =

1 1 1 2 1 2 2 3L G H ;L G G H ;L= = −

1 3 2G G H= −

1 21; 1∆ = ∆ = . 

( )1 2 31 L L L∆ = − + +

1 1 1 2 2 1 3 21 G H G G H G G H= − + +

( )1 1 2 2P PC
R

+
∴

∆ ∆
=

∆
( )

( )
1 2 1 3

1 1 1 2 2 1 3 2

G G G G
1 G H G G H G G H

+
=

− + +

Q.4 (a) 
No. of forward path =2 

1 22 2

1 1P , P
S S

= =

1 21; 1∆ = ∇ =  

1 2 2

4 2L ,L
5 S
− −

= =

3 4
2L 4,L

S
−

= − =

No non touching loops  
1 2 3 4k 1[L L L L ]∆ = + + +  

2

4 2 51 4
S S S

= + + + +

2 2

2

S 4s 2 4S 4s
S

+ + + +
=

2

2

5s 6s 2
S
+ +

=

2 2

2 2

2

1 1
s 1S S

5s 6s 2 5s 6s 2
S

+ +
= =

+ + + +

1 2 3 4 
(a) (c) (c) (a) 

ANSWER  KEY: 

EXPLANATIONS 
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2.1 INTRODUCTION 

Time response of the output means 
behavior of the response with respect to 
the time. In a practical system, output of 
the system takes some time to reach its 
final value. The final state achieved by the 
system response (output) is called steady 
state.  
Following are the characteristics of the 
Steady State Response of a control system. 

• The part of the time response that
remains even after the transients
have died out, is said to be steady
state response.

• The steady state part of time
response reveals the accuracy of a
control system.

• Steady state error is observed if
actual output does not exactly match
with the input.

The state of output between application of 
input & steady state is called transient 
state. 
Following are the characteristics of the 
Transient State Response of a control 
system. 

• The part of the time response which
goes to zero after a large interval of
time, is known as transient
response.

• It reveals the nature of response.
• It gives an indication about the

speed of response.

 Hence the total time response of the 
system can be written as 

ss tc(t) C C (t)= +  

Note:  
The difference in the desired & actual 
output is called steady state error sse . 

2.1.1 STANDARD TEST SIGNALS: 
The various inputs affecting the 
performance of the system are 
mathematically represented as standard 
Test signal. 

I. Sudden input → Step Signal 
II. Velocity input → Ramp signal

III. Acceleration input → Parabolic
signal

IV. Sudden shock → Impulse signal –
Stability analysis

2.2    TIME RESPONSE OF A SECOND 
ORDER CONTROL SYSTEM FOR UNIT 
STEP INPUT: 

A second order control system is one 
wherein the highest power of s in the 
denominator of its transfer function equals 
2. Transfer function of a second order
control system is given by 

2
n

2 2
n n

C(s)
R(s) s 2 s

ω
=

+ ζω +ω
… (I)

The parameter ξ and ωnwill be explained 
later. The block diagram representation of 
the transfer function given by above 
expression 

The response of the system is given by 
n 2t

2 1
n2

1ec(t) 1 sin 1 tan
1

−ζω
−

   − ζ  = − ω −ζ +  
 ζ − ζ     

Where 2
d n 1ω = ω −ζ

and 
2

1 1tan−
 − ζ
 φ =
 ζ 

2 TIME DOMAIN ANALYSIS
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The error is given by  
e(t) r(t) – c(t)= And r(t) 1=  (unit step) 

n 2t
2 1

n2

1e1 sin 1 tan

)

1
1

e(t
−ζω

−
  − ζ − ω −ζ +  
 ζ− ζ  

∴ =

 
 −
   

Or 
n 2t

2 1
n2

1e sin 1 te(t) an
1

−ζω
−
 − ζ
 ω −ζ +
 ζ− ζ  

 
 =
  

The steady state error is 
n 2t

2 1
n2tss

1e .sie li n 1m t tan
1

−ζω
−

→∞

 − ζ
 ω −ζ +



 ζ


 =
−  ζ 

= 0 
• The time response expression indicates

that for values of 1<ξ the response
presents exponentially decaying 
oscillations having a frequency

21−nω ξ and the time constant of 
exponential decay is 1/ nξω . 

• The term ωn is called natural frequency
of oscillations.

• The term 21= −d nω ω ξ  is called 
damped frequency of oscillations.

2.2.1 DAMPING RATIO AND DAMPING 
FACTOR 

The two roots can be expressed as 
2

1 2 n ns ,s j 1= ζω ± ω −ζ

dj= −α ± ω
Where  

nα = ζω is called damping factor and 
2

d n 1ω = ω −ζ

Note: 
α appears as the constant that is multiplied 
to t in the exponential term, therefore α 
controls the rate of rise or decay of the 
unit-step response. 
Now, ξ is called as damping ratio & it is 
given by 

n

ξ
ω

=
α

actual damping factor
damping factor at critical damping(i.e.whenξ 1)=

The above figure shows loci of damping 
ratio ξ. ξ is the cosine of the angle between 
the radial line to the roots and the negative 
axis when the roots and the negative axis 
when the roots are in the left-half s-plane, 
or ξ = cos θ. 

2.2.2 NATURAL UNDAMPED FREQUENCY 

When = 0, the damping is zero, the roots 
of the characteristic equation are 
imaginary, shows that the unit-step 
response is purely sinusoidal. Therefore, 
ωn corresponds to the frequency of the 
undamped sinusoidal response.  

The above figure shows the loci of ωn. ωn is 
the radial distance from the roots to the 
origin of the s-plane 
Note: 
1) The left-half s-plane corresponds to

positive damping (i.e., the damping
factor or damping ratio is positive).
Positive damping causes the unit-step
response to settle to a constant final

ξ
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value in steady state due to the negative 
exponent of exp (- ωnt). The system is 
stable. 

2) The right-half s-plane corresponds to
negative damping. Negative damping
gives a response that grows in
magnitude without bound with time,
and the system is unstable.

3) The imaginary axis corresponds to zero
damping (α = 0 or  = 0). Zero damping
results in a sustained oscillation
response, and the system is marginally
stable or marginally unstable.

4) n2 n n1
20 1: s ,s j 1 (- 0)±< ζ < = ω −ζ ζωζ <− ω

Under damped
5) ζ = 1: s1, s2 = -ωn 

Critically damped
6) ζ > 1:s1, s2 = -ζ 2

n 1±ω ζ − Over damped 
7) ζ  = 0:s1, s2 = nj± ω undamped 

8) ζ <0:s1, s2 = - ζ 2
n nj j 1ω + ω −ζ

negatively damped 

2.2.3 TIME RESPONSE FOR DIFFERENT 
VALUES OF 𝛏𝛏 

2.2.4 POLE LOCATIONS FOR DIFFERENT 
VALUES OF 𝛏𝛏 

ξ

ξ
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2.3 TIME RESPONSE SPECIFICATION 

In specifying the transient response 
characteristics of a control system to a unit-
step input, it is common to specify the 
following: 
1. Delay time, td

2. Rise time, tr

3. Peak time, tp

4. Maximum overshoot, Mp

5. Setting time, ts

These specifications are defined in what 
follows and are shown graphically in figure. 

1) Delay time 𝐭𝐭𝐝𝐝 : The delay time is the
time required for the response to reach
half the final value in the first attempt.

d
n

1 0.7ξt
ω
+

=

2) Rise time 𝐭𝐭𝐫𝐫: The rise time is the time
required for the response to rise from
10% to 90% of its final value for over
damped system. For under damped
second-order systems, the 0% to 100%
rise time is normally used.

r
d

π θt
ω
−

=

Where, 
2

1 1 ξ
θ tan

ξ
− −

=

3) Peak time 𝐭𝐭𝐩𝐩: The peak time is the time
required for the response to reach the
first peak of the overshoot.

p 2
d n

nπ nπt
ω ω 1 ξ

= =
−

Where n 1,2,3,4,5,6= ……… 
Note: 
• n = 1 for 1st over shoot (+ve peak)
• n = 2 for 1st undershoot (-ve peak)
• n = 3 for 2nd over shoot
• n = 4 for 2nd undershoot

1) Peak Overshoot 𝐌𝐌𝐏𝐏: The maximum
overshoot is the maximum peak value
of the response curve measured form
unity. If the final steady-state value of
the response differs from unity, then it
is common to use the maximum percent
overshoot. It is defined as

( ) ( )
( )

p
P

c t c
%M 100%

c
− ∞

= ×
∞

2πξ/ 1 ξe 100%− −= ×  
The amount of the maximum (percent) 
overshoot directly indicates the relative 
stability of the system. 

2) Settling time 𝐭𝐭𝐬𝐬: The setting time is the
time required for the response curve to
reach and stay within a range about the
final value of size specified in
percentage of the final value (usually
2% or 5%).
a) Settling time for 2% transition

band: It is the time taken by the
oscillations to decrease and stay
within a limit of 2 % of the final
value & it is given by

sT 4T=  where
n

1T
ξω

=

s
n

4    T
ξω

∴ =

b) Settling time for 5% transition
band: It is the time taken by the
oscillations to decrease and stay
within a limit of 5% of the final
value & it is given by

sT 3T=  where
n

1T
ξω

=

s
n

3   T
ξω

∴ =

~ ~

Rise time
Setting
time ts

y(t)

tr

t

Unit-step input
Maximum
overshoot

1.05
1.00
0.95
0.90

Delay
 time
 td

0.50

0.10
0

Figure: Typical unit-step response of a control system
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2.4 STEADY STATE ERROR 
 
It is the difference between the actual 
output and the desired output. The steady 
state performance of a control system is 
assessed by the magnitude of the steady 
state error possessed by the system and the 
system input specified as either step or 
ramp or parabolic.  
 

 
 

The error signal generated after comparing 
input & feedback signal is given by  
E(s) R(s) – B(s)=   
Where,  B(s) is the feedback signal & it is 
given by 
B(s) H(s)C(s)=   
Now, the output C(s) G(s)E(s)=   

  E(s) R(s) – H(s)G(s)E(s)∴ =  

( ) ( )
1E(s) R(S)

1 G s H s
⇒ =

+
 

This E(s) is the error in Laplace domain & 
the corresponding error in time domain is 
e(t). Now the steady state error is the error 
when t → ∞. 
i.e. ss t

e lim e(t)
→∞

=  

from the final value theorem  

t s 0
lim e(t) limsE(s)
→∞ →

=  

∴ ss s 0 s 0
e limsE(s) lim

→ →
= =   

( ) ( )
sR(s)

1 G s H s+
 

 
2.4.1 STEADY STATE ERROR FOR UNIT 
STEP INPUT 

For unit step input, 1R(s)
s

=  

We know that, 

( ) ( )

( ) ( )

ss s 0

s 0

sR(s)e lim
1 G s H s

1s
s     = lim

1 G s H s

→

→

=
+

×
=

+

( ) ( ) Ps 0

1 1
1 lim G s H s 1 K

→

= =
+ +

 

Where,  
( ) ( )P s 0

K lim G s H s
→

=  is called positional 

error constant.   
Case ‘a’: For type ‘0’ 

PK constant=  

ss e constant∴ =  
Case ‘b’: For type ‘1’: 

PK →∞  

ss
1e 0

1
∴ = =

+∞
 

Case ‘c’: For type ‘2’: 
PK →∞      

ss
1 e 0

1
∴ = =

+∞
 

Note:  
For the same type of input, as the system 
type increases the steady state error 
decreases. 
 
2.4.2 STEADY STATE ERROR FOR RAMP 
INPUT 

For ramp input, 2

1R(s)
s

=  

We know that,  

( ) ( ) ( ) ( )
2

ss s 0 s 0

1ssR(s) se lim lim
1 G s H s 1 G s H s→ →

×
= =

+ +

( ) ( ) vs 0 s 0

1 1
lims limsG s H s K
→ →

= =
+

 

Where, ( ) ( )V s 0
K limsG s H s

→
=  is called 

velocity error constant. 
Case ‘a’: For type ‘0’ 

( ) ( )v s 0
K limsG s H s 0

→
= =  

ss
v

1   e
K

∴ = = ∞  
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Case ‘b’: For type ‘1’: 
vK constant=  

ss
v

1   e constant
K

∴ = =

Case ‘c’: For type ‘2’: 
vK →∞  

ss
1   e 0∴ = =
∞

Note:  
As the unit input changes from unit step to 
ramp and ramp to parabola the steady state 
error increases for the same type. 

2.4.3 STEADY STATE ERROR FOR 
PARABOLIC INPUT 

For parabolic input, 3

1R(s)
s

=

We know that, 

( ) ( ) ( ) ( )
3

ss s 0 s 0

1ssR(s) se lim lim
1 G s H s 1 G s H s→ →

×
= =

+ +

( ) ( )2 2
as 0 s 0

1 1
lims lims G s H s K
→ →

= =
+

Where, ( ) ( )2
a s 0

K lims G s H s
→

= is called 

acceleration error constant. 

Case ‘a’: For type ‘0’ 
( ) ( )2

a s 0
K lims G s H s 0

→
= =  

ss
a

1   e
K

∴ = = ∞

Case ‘b’: For type ‘1’: 
aK 0=  

ss
a

1   e
K

∴ = = ∞

Case ‘c’: For type ‘2’: 
vK constant=

ss   e constant∴ =

Example:  
The system illustrated in Fig. is a unity 
feedback control system with a minor 
feedback loop (output derivative feedback). 

a) In the absence of derivative feedback (a
= 0), determine the damping factor and
natural frequency. Also determine the
steady-state error resulting from a unit-
ramp input.

b) Determine the derivative feedback
constant which will increase the
damping factor the system to 0.7. What
is the steady-state error to unit-ramp
input with this setting of the derivative
feedback constant?

Solution 
a) With a = 0, the characteristic equation

when derivative feedback is zero, the
system will be a unity feedback system
with transfer function
( )
( ) 2

C s 8
R s s 2s 8

=
+ +

2

2

d d10 150E, Where(r )is the
dt dt
θ θ
+ = −θ

The characteristics equation is 
2s 2s 8 0+ + =  

Equating with the standard form 
2 2

n ns 2ξω s ω 0+ + =  
We get nω 8 2 2rad / sec= =  
And n2ξω 2=  

1   ξ
2

0 3
2

. 53∴ ==  

Now for ramp input the velocity error 
constant is 

( ) ( ) ( )V s 0

8 8K limsG s H s s 4
s s 2 2→

= = × = =
+

( ) 1ess to unit ramp 0.25
4

− = =

b) With derivative feedback, the transfer
function is
( )
( ) 2

C s 8
R s s (2 8a)s 8

=
+ + +

The characteristics equation is 
2s (2 8a)s 8 0+ + + =  

+ C(s)R(s) + 8
s(s+2)

as
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Equating with the standard form 
2 22 0+ + =n ns ξω s ω  

We get 
n 8 2 2rad / secω = = And 

2 2 8= +nξω a  

2 0.7 2 2 2 8× × = + a  
a 0.245⇒ =

Now for ramp input the velocity 
error constant is 

( ) ( )V s 0
K limsG s H s

→
=

( )
8 8s

s s 2 8a 2 8a
= × =

+ + +

( ) 2 8a  ess to unit ramp
8
+

∴ − =

0.495=  

Example: 
Determine the values of K and k of the 
closed-loop shown in fig. so that the 
maximum overshoot in unit-step response 
is 25% and the peak time is 2 sec. Assume 
that J = 1 kg-m2. 

Solution:  
The closed-loop transfer function is 

2

C(S) K
R(S) Js Kks K

=
+ +

By substituting J = 1 kg-m2 into this last 
equation, we have 

2

C(S) K
R(S) s Kks K

=
+ +

Now equating with the standard transfer 
function 

nω K=
The maximum overshoot Mp is 

2ξπ/ 1 ξ
pM e 0.25− −= =

From which 

2ξπ/ 1 ξe 0.25− − =  or 
ξ 0.404=  
The peak time tp is specified as 2 sec. And 
so 

p
d

t 2π
= =
ω

 or dω 1.57=

Then the undamped natural frequency ωn 
is  

d
n 2 2

1.57 1.72
1 1 0.404
ω

ω = = =
−ζ −

 

There, we obtain 
2 2
nK 1.72 2.95 N m= ω = = −

n2 2 0.404 1.72k 0.471sec
K 2.95
ζω × ×

= = =

Example:  
A servomechanism is represented by the 
equation actuating signal. Calculate the 
value of damping ratio, undamped and 
damped frequency of oscillations 
Solution:  

2

2

d d10 150E
dt dt
θ θ
+ =  Or 

2

2

d d10 150(r )
dt dt
θ θ
+ = −θ

The equation in Laplace domain is 
( )2s (s) 10s (s) 150 R(s) (s)θ + θ = −θ

2

(s) 150
R(s) s 10s 150
θ

=
+ +

Comparing this with 
2

n
22

n ns 2 s+ ζ +
ω
ω ω

2
n 150ω =

10 =0.41
2 12.25

∴ ζ =
×

2
n 150ω =

n  1225rad / sec∴ ω =

n2 10ζω =  10 =0.41
2 12.25

∴ ζ =
×

2
d n 1ω = ω −ζ

212.25 1 0.41= −
11.17rad / sec=  

+
-

C(s)R(s) +
-

1K
Js s

k
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Example 
The open loop transfer function of a unity 
feedback system is given by  

( ) KG s  
s(1 sT)

=
+

Where, T and K are constants having 
positive values. By what factor amplifier 
gain be reduced so that  
a) The peak overshoot of unit step

response of the system is reduced from
75% to 25%

b) The damping ratio increases from 0.1 to
0.6 

Solution 

( ) KG s  
s(1 sT)

=
+

Let the value of damping ration is 1ζ when 
the peak overshoot is 75% and 2ζ when 
peak overshoot in 25% 

p 2
M e

1
−πζ

=
−ζ

For pM 75%=

 
and for 2 0.4037ζ = ζ =  
Transfer function 

2

G(s) K C(s)
1 G(s)H(s) Ts s K R(s)

= = =
+ + +

or 
2

C(s) K / T
1 KR(s) s s
T T

=
+ +

Therefore 

n n
1K / T  and 2
T

ω = ζω =

Example 
The open loop transfer function of a unity 

feedback system is KG(s)
s(1 Ts)

=
+

. Find by 

what factor the gain K be reduced so that 
the overshoot is reduced from 60% to 15% 
(b) Find by what factor the gain K should 
be reduced so that the damping ratio is 
increased from 0.1 to 0.6 

Solution 

2

C(s) K / T
1 KR(s) s s
T T

=
+ +

Comparing with 
2
n

2 2
n n

C(s)
R(s) s 2 s

ω
=

+ ζω +ω

2
n n

K 1 and 2
T T

ω = ζω =

Therefore 1
2 KT

ζ =

Let  
1 10.1 when gain is K  and ζ =

2 20.6 when gain is Kζ =

1 2

1 1  0.1=  and 0.6 = 
2 K T 2 K T

∴

or 1
2

KK
36

=

Therefore the gain should be reduced by a 
factor 36 
Let be the damping ratio when the 
percentage overshoot is 60% 

1

1
12

3.14 0.60 = e  or 0.1604
1

−ζ ×
∴ ζ =

−ζ

Similarly 
2

22
2

3.140.15 e or 0.52
1

−ζ ×
= ζ =

−ζ
  or 

1 1 2

2 2 1

K K0.1604
K 0.52 K

ζ
= =

ζ
 or 

1
2

KK
10.51

=

Therefore gain should be reduced by a 
factor 10.51 

091.01 == ξξ
%25=PM

1ζ
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Q.1 If the characteristic equation of a 
closed –loop system is 2S 2s 2 0+ + =
, then the system is  
a)overdamped     
b)critically damped  
c)underdamped        
d)undamped  

[GATE -2001] 

Q.2 Considers a system with the transfer 

function ( ) 2

s 6s
Ks s 6

+
=

+ +
. Its 

damping ratio will be 0.5 when the 
value of K is  
a)2/6 b)3 
c)1/6 d)6 

[GATE -2002] 

Q.3 The transfer function of system is 

( ) ( )
100G s

s 1 (s 100)
=

+ +
.For a unit-

step input to the system the 
approximate settling time for 2% 
criterion is  
a)100 sec b)4 sec 
c)1 sec  d)0.01 sec 

[GATE -2002] 

Q.4  A second-order system has the 

transfer function 2

C(s) 4 .
R(s) s 4s 4

=
+ +

With r(t) as the unit-step function , 
the response c(t) of the system is 
represented by  

a) 

b) 

c) 

d) 

[GATE -2003] 

GATE QUESTIONS(EC) 
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Q.5 A causal system having the transfer 

function ( ) 1H s
s 2

=
+

is excited with

( )10u t . The time at which the 
output reaches 99% of its steady 
state value is  
a)2.7sec b)2.5 sec 
c)2.3 sec d)2.1 sec 

[GATE -2004] 

Q.6 In the derivation of expression for 
peak percent overshoot, pM exp=

21

 −πζ
 
 − ζ 

100× Which one of the 

following conditions is NOT 
required? 
a) System is linear and time

invariant
b) The system transfer function has

a pair of complex conjugate
poles and no zeros

c) There is no transportation delay
in the system

d) The system has zero initial
conditions.

[GATE -2005] 

Q.7 A ramp input applied to an unity 
feedback system results in 5% 
steady state error. The type number 
and zero frequency gain of the 
system are respectively  
a)1 and 20 b) 0 and 20
c)0 and 1/20 d)1 and 1/20 

[GATE -2005] 

Q.8 The transfer function of a plant is 

( ) ( ) 2

5s
s 5 (s s 1)

=
+ + +

. The second-

order approximation of ( )T s using 
dominant pole concept is  

a) 
( )

1
s 5 (s 1)+ +

b) 
( )

5
s 5 (s 1)+ +

c) 2

5
s s 1+ +

d) 2

1
s s 1+ +

          [GATE -2007] 

Q.9 Step response of a set of three 
second-order under damped systems 
all have the same percentage 
overshoot. Which of the following 
diagrams represents the poles of 
three systems? 
a) 

b) 

c) 

d) 

[GATE -2008] 

Q.10 Group I lists a set of four transfer 
functions.  Group II gives a list of 
possible step responses (t). Match 
the step responses with the 
corresponding transfer functions.  
Group I 
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2

25P
S 25

=
+

2

36Q
S 20s 36

=
+ +

2

36R
S 12s 36

=
+ +

2

36S
S 7s 49

=
+ +

Group II 
1) 

2) 

3) 

4) 

a)P-3,Q-1,R-4,S-2   b)P-3,Q-2,R-4,S-1 
c)P-2,Q-1,R-4,S-3   d)P-3, Q-4,R-1,S-2 

[GATE -2008] 

Q.11 The unit step response of an under-
damped second order system has 
steady state value of -2 .Which one 
of the following transfer functions 
has these properties? 

a) 2

2.24
2.59 1.12
−

+ +s s

b) 2

3.82
1.91 1.91
−

+ +s s

c) 2

2.24
2.59 1.12
−

− +s s

d) 2

3.82
1.91 1.91
−

− +s s
          [GATE -2009] 

Q.12 The differential equation 
2

2

d y dy100 20 y x(t)
dt dt

− + =  describes a 

system with an input x(t) and an 
output y(t) .The system, which is 
initially relaxed, is excited by a unit 
step input. The output y(t)   can be 
represented by the waveform  
a) 

b) 

 c) 

             d) 

[GATE -2011] 

Q.13 The open- loop transfer function of a 

dc motor is given as
a

ω(s) 10=
V (s) 1+10s

. 

When connected in feedback as 
shown below, 
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the approximate value of aK  that 
will reduce the time constant of 
closed loop system by one hundred 
times as compared to that of the 
open- loop system is  
a)1 b)5 
c)10 d)100 

[GATE-2013] 

Q.14 For the following feedback system 

( ) ( ) ( )
1G s .

S 1 S 2
=

+ + +
 The 2% 

settling time of the step response is 
required to be less than 2 seconds.  

Which one of the following 
compensators C(s) achieves this?  

a) 13
s 5

 
 + 

b) 0.035 1
s

 + 
 

 

c) ( )2 s 4+ d) s 84
s 3
+ 

 + 
 

 [GATE-2014] 

Q.15 The natural frequency of an 
undamped second-order system is 
40 rad/s. If the system is damped 
with a damping ratio 0.3, the 
damped natural frequency in 
rad/s is ________. 

 [GATE-2014] 

Q.16  The steady state error of the system 
shown in the figure for a unit step 
input is _________. 

[GATE-2014] 

Q.17 For the second order closed-loop 
system shown in the figure, the 
natural frequency (in rad/s) is  

a) 16 b) 4
c) 2 d) 1

 [GATE-2014] 
Q.18 The characteristic equation of a 

unity negative feedback system 1 + 
KG(s) = 0. The open loop transfer 
function G(s) has one pole at 0 and 
two poles at -1. The root locus of the 
system for varying K is shown in the 
figure.  

The constant damping ratio line, for 
ζ = 0.5, intersects the root locus at 
point A. The distance from the origin 
to point A is given as 0.5. The value 
of K at point A is____________. 

[GATE-2014] 

Q.19 The output of a standard second-
order  system for a unit step input is 
given as 

( ) t2 e cosy t t1 3
63

− π −= 


− 


. The 

transfer function of the system is   
 a) 

( )
2

s 2 (s 3)+ +
b) 

2

1
s 2s 1+ +

            c) 2

3
s 2s 3+ +

d) 2

4
s 2s 4+ +

 [GATE-2015] 
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Q.20 The open-loop transfer function of a 
unity-feedback control system is 

given  by ( ) K
s(

G s  
s 2)

=
+

. 

For the peak overshoot of the 
closed-loop system to a unit step 
input to be 10%, the value of K is 
__________.  

 [GATE-2016] 

Q.21 For the unity feedback control 
system shown in the figure, the 
open-loop transfer function G(s) is 

given as ( ) 2
s( 1

G s
s )

=
+

The steady state error ess due to a 
unit step input is  
a) 0 b) 0.5
c) 1.0 d) ∞

 [GATE-2016] 

Q.22 In the feedback system shown 

below ( ) 2

1
(s s

G s
2 )

=
+

. 

The step response of the closed-loop 
system should have minimum 
setting time and have no overshoot.  

The required value of gain k to 
achieve this is  

[GATE-2016] 

Q.23  The open loop transfer function 
G(s)= (𝑠𝑠+1)

𝑠𝑠𝑝𝑝(𝑠𝑠+2)(𝑠𝑠+3)
Where p is an integer, is connected 
in unity feedback configuration as 
shown in the figure. 

Given that the steady state error is 
zero for unit step input and is 6 for 
unit ramp input, the value of the 
parameter p is __________ 

 [GATE-2017-01] 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
(c) (c) (b) (b) (c) (c) (a) (d) (c) (d) (b) (a) (c) (c) 
15 16 17 18 19 20 21 22 23 

38.15 0.5 (c) 0.375 (d) 2.86 (a) 1 1 

ANSWER  KEY: 
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Q.1 (c) 
2 2

n nS 2ξω ω 0+ + =

n
n

12ξω 2,ξ
ω

= =

nω 2=
1 ξ 1(underdamped)
2

= <

Q.2 (c) 

( )
2

s 6G s
s 6K s
K K

+
=

 + + 
 

Comparing with 2 2
n nS 2ξω ω+ +

n
6ω
K

=

n
12ξω
K

=

6 12 0.5
K K

× × =

2

6 1
K K

⇒ =

1K
6

=

Q.3 (b) 

( ) ( )
100G s

s 1 (s 100)
=

+ +
Taking dominant pole 
consideration,  
s 100= − pole is not taken. 

( ) 100G s
s 1

∴ =
+

Now it is 1st order system 
st 4T 4 1 4s∴ = = × =

Q.4 (b) 

2

C(s) 4
R(s) s 4s 4

=
+ +

n n2ξω 4,ω 2= =
ξ 1(Critical damping)∴ =

s
n

4 4t 2
ξω 1 2

= = =
×

Q.5 (c) 

( ) 1H s
s 2

=
+

( ) ( )r t 10u t= . 

( ) 10R s
s

=

( ) ( ) ( ) 1 10C s H s .R s .
s 2 s

= =
+

( )
10 A B 10

s s 2 s s 2
⇒ = + =

+ +

( )A s 2 Bs+ +  
s=0,10=2A 

A 5⇒ =
s 2,10 2B= − = −

B 5⇒ = −

( ) 5 5C s
s s 2

∴ = −
+

( ) 2tc t 5 1 e− = − 
Steady state value when t=0 is 
5.99% of steady state value reaches 
at  

2t5 1 e 0.99 5− − = ×   
2t1 e 0.99−⇒ − =

2te 0.1− =  
2t ln0.1⇒ − =

t 2.3sec⇒ =

Q.6 (c) 

Q.7 (a) 

( ) ( )SS 2s 0

1e limsE s ,R s
S→

= =

EXPLANATIONS 
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s 0

R(s)lims
1 G(s)→

=
+

s 0

1lim finite(given)
S sG(s)→

= =
+

 

( )v s 0
K limsG s

→
=

( )SS s 0

1e lim finite 5%
sG s→

= = =
1
20

=

K 20∴ =  
vK is finite for type 1 system having 

ramp input. 

Q.8 (d) 
In dominant pole concept, the factor 
that has to be eliminated should be 
in time constant form. 

( ) 2
2

5 5
ss 5 (S s 1) 5 1 (S s 1)
5

=
+ + +  + + + 

 

2

1
S s 1

=
+ +

Q.9 (c) 
Peak overshoot depends on ξas 

2ξπ/ 1 ξ
pM e− −=

Where  1ξ cos θ−=  
Where θ is the angle made by pole 
from negative real axis .To make pM  
same, θ should be the same. 

Q.10  (d) 
Comparing the given transfer 
function with  

2
n

2 2
n n

ω
s 2ξω S ω+ +

In 2

25P ξ 0
s 25

= =
+

 Therefore P is undamped 

2

36Q
s 20s 36

=
+ +
20ξ 1.67

2 6
⇒ = =

×
Qis over damped⇒

2

36R
s 12s 36

=
+ +
12ξ 1

2 6
⇒ = =

×
 

Ris critically damped⇒

2

49S
s 7s 49

=
+ +

7ξ 0.5
2 7

⇒ = =
×

 

S is under damped⇒

Q.11 (b) 
Steady state Value = -2 
Denominator: 

2
n n2ξω 1.91,ω 1.91= =  

nω 1.4⇒ ≅

n

1.91 1.91ξ 1
2ω 2.8

= = < …under damped 

Q.12 (a) 
2

2

d y dy100 20 y x(t)
dt dt

− + =

Taking Laplace transform of both 
sides  

( ) ( ) ( ) ( )2100s Y s 20sY s Y s X s− + =

( )22

Y(s) 1 1
X(s) 100s 20s 1 10s 1

⇒ = =
− + −

Poles are at  1 1s ,
10 10

=

As poles are on the right –hand side 
of s-plane so given system is 
unstable system. Only option (a) 
represents unstable system. 

Q.13 (c) 

( ) ( ) 10KG s H S O.L.T.F
1 10s

=
+

τ 10sec=  
10C.L.T.F τ 0.1

100
= =

10KC.L.T.F
10K 1 10s

=
+ +

10Kτ 0.1 K 10
10K 1

= = ⇒ ≅
+
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Q.14 (c)  
By observing the options, if we place 
other options, characteristic equation 
will have 3rd order one, where we 
cannot describe the settling time. 
If C(s) = 2(s+4) is considered  
The characteristic equation, is 
 s2 +3s+2+2s+8= 0  
s2 +5s+10=0   
Standard character equation 

2 2
n ns 2ξω s ω 0+ + =  

2
n nω 10;ξω 2.5= =  

Given, 2% settling time, 

n
n

4 2 ω 2
ξω

ξ⇒ < ⇒ >  

Q.15 (38.15 r/ sec) 
Given  n = 40 ω r / sec
ξ = 0.3 

2
d nω ω 1= ξ−

( )2
dω 40 1 0.3−=

dω 38.15r / sec=

Q.16 (0.5) 

Given ( ) ( )G s H 4 2
2 s 4

s
s

 = =
+ +

For unit step input, 
( )

s 0p k H slim G(s)
→

=

sp 0

4 2lim
s 2

k
s 4→

  
  + +  

=  

pk 1=  

Steady state error = 
p

ss
Ae

1 k+
=

sse 1
1 1

=
+

ss
1 0.50
2

e ⇒=  

Q.17 (c) 

Transfer function 2

Y(s) 4
U(S) S 4s 4

=
+ +

If we compare with standard 2nd 
order system transfer function  

i.e.,
2

n
2 2

n n

w
s 2ξw s w+ +

2
n nw 4 w 2rad / sec= ⇒ =  

Q.18 (0.375) 
We know that the co-ordinate of 
point A of the given root locus i.e. 
magnitude condition  

( )G s H(s) 1=
Here, the damping factor ξ = 0.5 and 
the length of 0A = 5  ξ = 0.5     

Then in the right angle triangle 
OX OX 1cos θ cos 60 OX
OA 0.5 4

= ⇒ = ⇒ =

AX AX 3sinsin 60 AX
OA 0

 
.5 4

θ ⇒ = ⇒ =⇒ =

So, the co-ordinate of point A is 
j 3-1 +4 4

Substituting the above value of A in 
the transfer function and equating 
to 1  
i.e. by magnitude condition,  

2
j 3-1s= +4 4

2

k =1
s(s+1)

1 3 9 3k= + . +
16 16 16 16

 
  
 

k 0375=  

Q.19 (d) 
  Here nξω =1 
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2 31-ξ =
2

1
2

ξ =

                nω = 2

Q.20 (2.86) 
K  2.86=  
Peak over shoot 10% 

21  e 0.1
−πξ

−ξ⇒ =  
2

2

2
[1n0.1]

1

 −πξ
 

− ξ  
⇒ =

22

2

1
1n0.1

−ξ π ⇒ =  ξ  
2

2

1
1n0.1

 1 π ⇒ 
= + ξ 

2

1 2.86=⇒
ξ

2 1
2.8

.34
6

0= =⇒ ξ

0.59⇒ξ =
→The characteristic equation of 
above transfer function is 

2s 2s k 0+ + =  
Comparing with standard equation 

2 2
n ns 2 s 0+ ξω +ω =  

k2 2⇒ ξ =
2k

2
⇒ =

ξ
2

2 2.81k 62
2
 

⇒   ξ
= =

ξ 
 

 k 2.86=   

Q.21 (a) 

For unit step input ess 
p

1
1 k

=
+

p s 0 s 0

2k lim G(s) lim
s(s 1)→ →

= = ∞
+

=

So, ss
1

1
e 0=

+∞
=

Q.22 (1) 
Minimum setting time and no 

overshoot implies case of critical 
damping.  
At critical damping 1.ζ =   

( ) 2

k
s s k

H s
2+ +

=

 n kω =

k2 2 2.1 k 2 k 1=ζ ⇒ × ⇒ω ==  
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Q.1 The block diagram shown in figure 
gives a unity feedback closed loop 
control system. The steady state 
error in the response of the above 
system to unit step input is 

a) 25% b) 0.75%
c) 6% d) 33%

           [GATE-2003] 

Q.2 The block diagram of a closed loop 
control system is given by figure. 
The values of K and P such that the 
system has a damping ratio of 0.7 
and an undamped natural frequency 

nω  of 5rad/sec, are respectively 
equal to 

a) 20 and 0.3 b) 20 and 0.2
c) 25 and 0.3 d) 25 and 0.2

    [GATE-2004] 

Q.3 Consider the feedback system 
shown below which is subjected to a 
unit step input. The system is stable 
and has following parameters 

pk 4,=  ik 10,=  500ω =  and
0.7ξ = . The steady state  value of 

Z is 

a) 1 b) 0.25
c) 0.1 d) 0

 [GATE-2007] 

Statement for common data Questions 
Q.4 and Q.5: 
R-L-C circuit shown in figure 

Q.4 For a step-input ei, the overshoot in 
the output e0will be 
a) 0, since the system is not under

damped 
b) 5%
c) 16%
d) 48%

[GATE-2007] 

Q.5 If the above step response is to be 
observed on a non-storage CRO, 
then it would be best have the ie  as a   
a) step function
b) square wave of 50Hz
c) square wave of 300Hz
d) square wave of 2.0KHz

[GATE-2007] 

GATE QUESTIONS(EE) 
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Q.6 The transfer function of a linear 
time invariant system is given as 

( ) 2

1G s
s 3s 2

=
+ +

The steady state value of the output 
of the system for a unit impulse 
input applied at time instant t=1 will 
be 
a) 0 b) 0.5
c) 1 d) 2

 [GATE-2008] 

Q.7 The transfer function of a system is 

given as 2

100
s +20s+100

. The system is 

a) an overdamped system
b) an underdamped system
c) a critically damped system
d) an unstable system

 [GATE-2008] 

Q.8 The unit-step response of a unity 
feedback system with open loop 
transfer function
G(s)=K/((s+1)(s+2)) is shown in the 
figure. The value of K is 

a) 0.5 b) 2
c) 4 d) 6

[GATE-2009] 

Q.9 For the system 2 ,
(s 1)+

the 

approximate time taken for a step 
response to reach 98% of its final 
value is 
a) 1s b) 2s
c) 4s d) 8s

[GATE-2010] 

Q.10 The steady state error of a unity 
feedback linear system for a unit 
step input is 0.1. The steady state 
error of the same system, for a pulse 

input r(t) having a magnitude of 10 
and a duration of one second, as 
shown in the figure is  

a) 0 b) 0.1
c) 1 d) 10

          [GATE-2011] 
Q.11 A two-loop position control system 

in above shown fig 

The gain k of the Tacho-generator 
influences mainly the  
a) peak overshoot
b) natural frequency of oscillation
c) phase shift of the closed loop

transfer function at very low
frequencies (ω→0)

d) phase shift of the closed loop
transfer function at very high
frequencies(ω→∞)

[GATE-2011] 

Q.12 An open loop control system results 
in a response of e-2t (sin5t + cos5t) 
for a unit impulse input. The DC gain 
of the control system is __________. 

 [GATE-2015] 

Q.13 The unit step response of a system 
with  the transfer function 

( ) 1 2
1

s
s

G s
=

−
+

is given by which one 

of the following waveforms? 
a)
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b) 

c) 

d) 

[GATE-2015] 

Q.14 A second-order real system has the 
following properties: 
a) the damping ratio ζ = 0.5 and

undamped natural frequency
n 10rad / sω =   

b) the steady state value of the
output, to a unit step input, is 
1.02. 

The transfer function of the system is 

a) 2

102
s 5s 100+ +

  b) 2

102
s 10s 100+ +

c) 2

100
s 10s 100+ +

d) 2

102
s 5s 100+ +

 [GATE-2016] 

Q.15 Consider a unity feedback system 
with forward transfer function is 
given by, 

( ) ( )( )
1G s

s 1 s 2
=

+ +
The steady state error in the output 
of the system for a unit-step input is 
_____ (up to 2 decimal places). 

[GATE-2018] 

Q.16 The unit step response y(t) of a 
unity feedback system with open 
loop  transfer function 

( ) ( )
( ) ( )2

KG s H s
s 1 s 2

=
+ +

is shown 

in the figure. The value of K is 
_________ (up to 2 decimal places). 

[GATE-2018] 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 
(a) (d) (a) (c) (c) (a) (c) (d) (c) (a) (a) 0.241 (a) (b) 
15 16 

0.67 8 

ANSWER  KEY: 
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Q.1 (a) 

( ) 3 15G s
s 15 s 1

   = ×   + +   
 

( ) ( )45 & H s 1
s 1 (s 15)

= =
+ +

 

Open loop transfer function 

( ) ( ) ( )
45G s .H s

s 1 (s 15)
= =

+ +
The system is type-0 
Steady state error to unit-step input 
where 

pk = Position error constant 

( )
LT

G s H(s)
s 0

=
→

⇒ ( )
LT

G s H(s)
s 0

=
→

( )p

LT 45k 3
s 0 s 1 (s 15)

= =
→ + +

 

ss
p

1 1e
1 k 1 3

= =
+ +

0.25or25%=

Q.2 (d) 

( ) ( ) ( )kG s andH s 1 sP
s s 2

= = +
+

Closed-loop transfer function 

( ) ( )
( )

G s
T s

1 G s H(s)
=

+

( )

k / s(s 2)
k1 .(1 sP)

s s 2

+
=

+ +
+

( )
k

s s 2 k(1 sP)
=

+ + +

⇒ ( ) ( )2

kT s
s 2 kP s k

=
+ + +

So, characteristic equation 
( )2s 2 kP s P= + + +  

Comparing with standard equation 
2 2

n ns 2ξω s ω= + +
2 2

nk ω 5 25= = =  
(where nω = undamped natural 
frequency) 

n2ξω 2 kP= +
⇒ 2 0.7 5 2 25P× × = +
(where ξ = damping ratio) 
P=0.2 

Q.3 (a) 
Step input ( )R s 1/ s⇒ =

2
i

p 2 2

k ωG(s) k
s s 2ξωs ω

  = +    + +  
and H(s)=1 

( )
C(s) G(s) G(s)
R(s) 1 G s H(s) 1 G(s)

= =
+ +

( ) ( )E s R s C(s)= −  

( ) ( )
( )

C s
R s 1

R s
 

= − 
 

( ) G(s) R(s)R s 1
1 G(s) 1 G(s)

 
= − = + + 

( ) ( )
i

i

k .R(s)k sZ s .E s
s 1 G(s)

= =
+

Steady state value of Z 

ss

LT
Z s Z(s)

s 0
=

→
 

EXPLANATIONS 
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i

2
i

p 2 2

k 1s. .LT s s
s 0 k ω1 k

s s 2ξωs ω

=
→   + +  + +  

i
2

i 2

k 1
ωk .
ω

= =  

Q.4 (c) 

i i
di 1e R L idt
dt c

= + + ∫
Taking Laplace transform 

i
1E (s) R Ls I(s)

Cs
 = + + 
 

iE (s)I(s) 1R Ls
Cs

=
+ +

0
1e idt
c

= ∫

( ) ( ) ( )i
0

E s1 1E s I s 1Cs Cs R Ls
Cs

 
 

⇒ = =  
 + +
 

( ) ( )
( )

0i
0 2

i

E sE (s)t s
RCs LSC 1 E s

=
+ +

2

1
R 1LC s s
L LC

=
 + + 
 

Characteristic eq. 
2 R 1s s 0

L LC
⇒ + + =

Comparing with 2 2
n ns 2ξω s ω+ +

n
1ω
Lc

=

n
R2ξω
L

=

n

R 1 R LC R Cξ
L 2ω L 2 2 L

= × = × =

6

3

10 10 10ξ 0.5
2 1 10

−

−

×
= =

×

Overshoot 
2πξ/ 1 ξ

p=P e− −=
2π 0.5 1 0.5e− × −=  

0.163 or 16.3%M=    

Q.5 (c) 

n
1ω
Lc

=

3 6

1
1 10 10 10− −

=
× × ×

410= rad/ sec 

Settling time ( )s
n

4t
ξω

=

4

4 0.8msec
10 0.5

= =
×

 

For a square wave T/2 should be 
greater than st
For 1f 50Hz=

1
s

T 1 10ms t
2 2 50

⇒ = = >>
×

For 2f 300Hz=  

2
s

T 1 1.67ms t
2 2 300

⇒ = = >
×

For 3f 2kHz=

3
s3

T 1 0.25ms t
2 2 2 10

⇒ = = >
× ×

Therefore, it would be best to have 
ie  as a square wave of 300Hz. 
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Q.6 (a) 
r(t) unit impulse  applied at t 

( ) ( ) s1 δ(t 1)R s 1 r t e− = = − = = 

( ) ( )
( ) 2

C s 1G s
R s s 3s 2

= =
+ +

( ) ( ) ( )
s

2

eC s R s G s
s 3s 2

−

= =
+ +

Steady state value of output, using 
final value theorem 

ss

LT
c s C(s)

s 0
=

→
s

2

LT se 0
s 0 s 3s 2

−

= =
→ + +

 

Q.7 (c) 

( ) 2

100M s
s 20s 100

=
+ +

Comparing with standard form, 

( )
2

n
2 2

n n

ωM s
s 2ξω s ω

=
+ +

n2ξω 20∴ =

nω 100=  
ξ 1=  

nω 10∴ =  
∴The system is critically damped. 

Q.8 (d) 
Steady state value of response=0.75 
Input is unit-step so steady state 
error 

sse 1 0.75 0.25= − =

Error ( ) ( )
R(s)E s

1 G s H(s)
= =

+

Where  ( ) ( ) ( )
kG s

s 1 s 2
=

+ +

( ) ( ) 1H s 1andR s
s

= =

Steady state error using find value 
theorem 

ss

LT
e sE(s)

s 0
=

→
 

( )
LT sR(s)

s 01 G s H(s)
=

→ +

( ) ( )

1s.LT 1s
ks 0 1 k / 21

s 1 s 2

= =
→ ++

+ +
10.25

1 k / 2
⇒ =

+
k1 4
2

⇒ + =  

k 6⇒ =

Q.9 (c) 
( )
( )

C s 2
R s s 1

=
+

( ) ( )1R s step input
s

=

( ) ( ) 2 2C s R s
s 1 s(s 1)

 = = + + 
1 12
s s 1
 = − + 

( ) [ ]1 tC t C(s) 2 1 e− − = = − 

Final value of  ( ) ssC t C 2= =
98% of ssC 0.98 2 1.96= × =  
Let t=T, the response reaches 
98% of its final values. 

t1.96 2 1 e− = − 
T 4sec.≈  

Q.10 (a) 
Let the system is represented as 

( )
( )

( )
( )

Y s G s
X s 1 G s H(s)

=
+

H(s) =1(unity feedback) 

Error ( ) ( )
( )

X s
E s

1 G s
= =

+
Steady-state error for 
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( ) ss
1x s ,e 0.1
s

= =

ss

LT
e sE(s)

s 0
=

→
 

( )
( )

LT sX s
s 01 G s

=
→ +
0.1⇒

1sLT s
s 01 G(s)

×
=

→ +
LT 1 0.1

s 01 G(s)
⇒

→ +
 

When input 
( ) ( )x t 10 u t u(t-1) = − 

( )
s1 ex s 10

s s

− 
= − 

 
s10 1 e

s
− = − 

ss

LT
e sE(s)

s 0
=

→
 

LT s (s)
s 01 G(s)

×
=

→ +

s10s 1 eLT s
s 0 1 G(s)

− × − 
=

⇒ +
s

ss

LT 10(1 e )e 0
s 0 1 G(s)

−−
⇒ = =

→ +

Q.11 (a) 

( ) ( )1G s and H s 1
s(s 1 k)

= =
+ +

Characteristic equation 
1+G(s)H(s)=0 

11 0
s(s 1 k)

⇒ + =
+ +

 

( )s s 1 k 1 0⇒ + + + =

( )2s R 1 s 1 0⇒ + + =
Comparing with 

2 2
n ns 2ξω s ω+ +

natural frequency nω 1=  
remains constant and 
does not depend on k 

n2ξω k 1= +  
k 1ξ

2
+

=

damping ratio depends on k 
peak overshoot 

2ξπ/ 1 ξ
pm e− −= =

Since pm  depends on ξ which 
depends on k. Hence peak overshoot 
is influenced by gain (k) of the 
techo-generator. 

Q.12 (0.241) 
( ) 2g t e [sin 5t cos5t]−= +

( ) { }2 2 2

5 s 2G s
(s 2) 5 s 2 5

+
= +

+ + + +

DC gain means  ( )
s

G s 0=

( ) 2 2 2 2

5 2 7G 0
2 5 2 5 29

= + =
+ +

Q.13 (a) 

( )Y s G(s) U(s)= ×
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( ) (1 2s) 1Y s .
(1 s) s
−

=
+

( ) A BY s
(s) (s 1)

= +
+

A 1,B 3= = −  
( ) ( ) ty t u t 3e u(t)−= −

( ) ( )ty t 1 3e u(t)−= −

Q.14 (b) 
The standard 2nd order T/F is  

2
n

2 2 2
n n

K
s 2

 ω
 + ξω +ω 
It is given that n0.5 & ω =10ξ =

2

100G(s) K
s 10s 100

=
+ +

Now to satisfy the steady state O/P 
1.02 

2 2

1.02 100 102G(s)
s 10s 100 s 10s 100

×
= =

+ + + +

Q.15 0.67 

Given: The open loop transfer 
function for given unity feedback 
system is 

( ) ( ) ( )( )
1G s H s

s 1 s 2
=

+ +

( )H s 1=  
Steady state error for unit step input 

( )ss
p

1e
1 K

=
+

Where, pK (Position error coefficient)

( ) ( )
s 0
lim G s H s
=

=

( )( )p s 0

1 1K lim
s 1 s 2 2=

= =
+ +

Steady state error

( )ss
1 1e 0.671 1.51

2

= = =
+

Hence, steady state error in the output 
of the system for a unit-step input is 
0.67. 

Q.16 8 

Given ( )
( ) ( )2

KG s
s 1 s 2

=
+ +

CLTF is given by, 
( )
( )

( ) ( )
( ) ( )

( )
( )

Y s G s H s G s
X s 1 G s H s 1 G s

= =
+ +

[Unit feedback system] 

( )
( )

( ) ( )

( ) ( )

2

2

K
Y s s 1 s 2

KX s 1
s 1 s 2

+ +
=

+
+ +

( )
( ) ( ) ( )2

Y s K
X s s 1 s 2 K

=
+ + +

( )
( ) ( )2

1 KY s
s s 1 s 2 K

= ×
+ + +

From final value theorem, 
( ) ( )

s 0
y limsY s 0.8

→
∞ = =  

[From time response shown in the 
figure steady state value in time 
domain is 0.8] 

K 0.8
2 K

=
+

K 1.6 0.8K= +
K 8=  

Hence, the value of K is 8. 

( ) 20

1 100lt 1.02 1.
10 100s

y K K
s s s→

 ∞ = = ⇒ = + + 
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Q.1 If a first order system and its time 
response to a unit step input are as 
shown below. The gain K is  

a) 0.25 b) 0.8
c) 1 d) 4

[GATE-2008] 

Statement for linked Answer Questions 
Q.2 & Q.3: 
A unity feedback system has open loop 

transfer function ( ) 100G s = .
s(s+p)

The time 

at which the response to a unit step input 

reaches its peak is π
8

 seconds. 

Q.2 The damping coefficient for the closed 
loop system is 
a) 0.4 b) 0.6
c) 0.8 d) 1

[GATE-2008] 

Q.3 The value of p is 
a) 6 b) 12
c) 14 d) 16

           [GATE-2008] 

Q.4 A unity feedback system has the 

transfer function 2

K(s b) .
S (s 20)

+
+

 The 

value of b for which the loci of all the 
three roots of the closed loop 
characteristic equation meet at a 
single point is  
a) 10/9 b)20/9 
c) 30/9 d)40/9 

[GATE-2009] 

Q.5 A unit ramp input is applied to the 
system shown in the shown in the 
adjoining figure. The steady state 
error in its output is  

a)0 b)0.5 
c)1 d)2 

[GATE-2010] 

Q.6 A unity feedback system has an 
open loop transfer function 

kG(s)
s(s 3)+

.The value of k that

yields a damping ratio of 0.5 for the 
closed loop system is  
a)1 b)3 
c)5 d)9 

[GATE-2010] 

Q.7 The unit-step response of a negative 
unity feedback system with the 
open- loop transfer function is 

( ) 6G s =
s+5

a) -5t1-e b) -5t6-6e

c) -5t6 6- e
5 5

d) -11t6 6- e
11 11

           [GATE-2011] 

Q.8 The open- loop transfer function of a 

dc motor is given as
a

ω(s) 10=
V (s) 1+10s

. 

When connected in feedback as 
shown below, the approximate 
value of aK  that will reduce the 
time constant of closed loop 

GATE QUESTIONS(IN) 
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system by one hundred times as 
compared to that of the open- loop 
system is 

a) 1 b) 5
c) 10 d) 100

[GATE-2013] 

Q.9 A plant has an open-loop transfer 
function, 

( )( )P
20G (s)

S 0.1 S 2 (S 100)+ + +
The approximate model obtained by 
retaining only one of the above 
poles, which is closest to the 
frequency response of the original 
transfer function at low frequency is 

 
 

a) 0.1
s 0.1+

b) 2
s 2+

c) 100
s 100+

d) 20
s 0.1+

[GATE-2014] 

Q.10  A system with transfer function 

( ) 2G s 1
s 1

=
+

 has zero initial 

conditions. The percentage 
overshoot in its step response is 
___________ % 

 [GATE-2015] 

 

1 2 3 4 5 6 7 8 9 10 
(d) (b) (b) (b) (b) (d) (d) (c) (a) 100 

ANSWER  KEY: 
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Q.1 (d) 

( ) ( )
kT s  and

ST 1 K
=

+ +

( ) ( )
kC s

S ST k 1
=

+ +

( )ss S 0

kC limS.C s
k 1→

= =
+

40.8 5k
5

= = ⇒

4k 4 k 4= + ⇒ =  

Q.2  (b) 

( ) ( )2

100T s
s Ps 100

=
+ +

n p 2
n

π π10 and t
8 ω 1 δ

ω = = =
−

3
5ξ⇒ =

Q.3   (b) 
P0.6 P 12
20

= ⇒ =

Q.4 (b) 

( ) 2

k(s b)G s
s (s 20)

+
=

+
For unity feedback, characteristic 
equation is ( )1 G s 0+ =

3 2s 20s ks kb 0⇒ + + + =
( )
( )

3 2s 20s
k

s b
+

⇒ =
+

We need to find the breakaway 
point. 

So, dk 0
ds

=

Or, dk 0
ds

− =

( ) ( ) ( )2 3 2s b 3s 40s s 20s 0+ + − + =
2 2 2 33s 40s 3bs 40bs s⇒ + + + −
220s 0+ =  

( )3 22s 3b 20 s 40bs 0⇒ + + + =
Now, s = 0 is not the breakaway 
point 
So, ( )32s 3b 20 s 40b 0+ + + =
For all the three root loci to meet at 
a single point, we need that this 
equation has equal roots. 
So, 2(3b 20) 4 2 40b+ = × ×

29b 120b 400 320b⇒ + + =
29b 200b 400 0⇒ − + =
( ) ( )9b b 20 10 b 20 0⇒ − − − =

( ) ( )9b 20 b 20 0⇒ − − =

So, 𝑏𝑏 = 20 𝑜𝑜𝑜𝑜 20
9

 
But b=20is not the required value of 
b because it will cancel out an open 

–loop pole so, 20b
9

= is the required 

value 

Q.5  (b) 
2G(s)

s(s 1)+
For unit Ramp input 
( ) ( )r t R.t.u t R 1= =

Velocity error constant, 
( )v s 0

K Lt S.G s 2
→

= =

ss
v

R 1e 0.5
K 2

∴ = = =

Q.6  (d) 

( ) ( )2

KT s
s 3s K

=
+ +

n
n

3 3Kand or
2ω 2 K

ξω = =

EXPLANATIONS 
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2

9K For 0.5 K 9
4

ξ
ξ

= = ⇒ = . 

Q.7  (d) 
C(s) 6CLTF
R(s) s 11

= =
+

The unit step response is given by 

( ) 6 6 /11 6 /11C s
s(s 11) s s 11

= = −
+ +

( ) 11t6 6C t e u(t)
11 11

− = − 
 

Q.8 (c) 

( ) ( ) 10KG s H S O.L.T.F
1 10s

=
+

τ 10sec=  
10C.L.T.F τ 0.1

100
= =

10KC.L.T.F
10K 1 10s

=
+ +

10Kτ 0.1 K 10
10K 1

= = ⇒ ≅
+

Q.9 (a) 
Given 

( ) ( )( )
20

s 0.1 s 2 (s
G 

0)
s

10+ + +
=

( )( )

20
s s s0.1 2 (100) 1 1 1

0.1 2 100

=
   + + +   
   

( ) 1
s s s1 1 1

0.1 2

G

100

s
   + + +   
   

=

Approximate model at low 
frequency 

then ( ) 1
s1

0.1

G s


=
+ 

 

( ) 0.1G s =
(s+0.1)

⇒

Q.10 (100) 
 Comparing the denominator, ξ=0

2

-rξ

1-ξ%overs e ×100hoot= =100  
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3.1 INTRODUCTION 

The stability of a system relates to its 
response to inputs or disturbances. A 
system which remains in a constant state 
unless affected by an external action and 
which returns to a constant state when the 
external action is removed can be 
considered to be stable. 
In other words, a system is said to be stable if  
a) Bounded input gives bounded o/p
b) O/P should reduce to zero when input

is removed.
The stability of the system can be
determined with the knowledge
location of poles of the system.
1) If all the poles of the system lie in

the left half of s plane, then the
system is stable.

2) If there are non-repeated poles on
the jω axis, system is marginally
stable.

3) If there are repeated poles of the
system on jω axis, system is
unstable.

4) If there is one or more than one pole
in R.H. of imaginary axis, system is
unstable.

3.1.1 ASYMPTOTICALLY STABLE SYSTEM 

The stationary impulse response, h(t), is 
zero  
i.e. 

t
lim h(t) 0
→∞

=

For a system to be asymptotically or 
absolutely stable, each of the poles of the 
transfer function lies strictly in the left half 
plane (has strictly negative real part). 

3.1.2 MARGINALLY STABLE SYSTEM 

The stationary impulse response is 
different from zero, but limited 
i.e. 

t
0 lim h(t)

→∞
< < ∞  

For a system to be marginally stable, one or 
more poles lies on the imaginary axis (have 
real part equal to zero), and all these poles 
are distinct. Besides, no poles lie in the 
right half plane. A marginally stable system 
has its output oscillates with constant 
frequency & amplitude. 

3.1.3 UNSTABLE SYSTEM 

The stationary impulse response is 
unlimited 
i.e. 

t
lim h(t)
→∞

= ∞

For a system to be unstable, at least one 
pole lies in the right half plane (has real 
part greater than zero). Or: There are 
multiple poles on the imaginary axis. 
Note: 
A stable system is either asymptotically 
stable or marginally stable. 

3 TIME DOMAIN STABILITY
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3.1.4 STEP RESPONSE FOR 
DIFFERENT POLE LOCATION 

3.2 ROUTH’S STABILITY CRITERION 

There are certain other methods to verify 
the stability of the control systems. 

The Routh stability criterion provides a 
convenient method of determining control 
systems stability. It determines  
1) The number of characteristic roots

within the unstable right half of the s-
plane, and the number of characteristic
roots in the stable left half.

2) The number of roots on the imaginary
axis.  It does not locate the roots. The
Routh-Hurwitz test is performed on the
denominator of the transfer function, it
is the characteristic equation. For
instance, in a closed-loop transfer
function with G(s) in the forward path,
and H(s) in the feedback loop, we have:

G(s)T(s)
1 G(s)H(s)

=
+

If we simplify this equation, we will 
have an equation with a numerator N 
(s), and a denominator D(s): 

N(s)T(s)
D(s)

=

The Routh-Hurwitz criteria will focus 
on the denominator polynomial D(s). 
Here are the three tests of the Routh-
Hurwitz Criteria. For convenience, we 
will use n as the order of the polynomial 
(the value of the highest exponent of s 
in D(s)). The equation D(s) can be 
represented generally as follows: 
( ) n n 1 1

0 1 n 1 nD s a s a s a s a−
−= + +…+ +

3.2.1 ALGORITHM FOR APPLYING 
ROUTH’S STABILITY CRITERION 

The algorithm described below, like the 
stability criterion, requires the order of 
D(s) to be finite. 
1) Remove the roots at origin to obtain the

polynomial, and multiply by −1 if
necessary, to obtain
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n n 1 1
0 1 n 1 na s a s a s a 0−

−+ +…+ + =
Where, 0a 0≠  & na 0> . 

2) If the order of the resulting polynomial
is at least two and any coefficient ai is
zero or negative, the polynomial has at
least one root with nonnegative real
part. To obtain the precise number of
roots with nonnegative real part,
proceed as follows. Arrange the
coefficients of the polynomial, and
values subsequently calculated from
them as shown below:

n
0 2 4 6

n
1 3 5 7

n
1 2 3 4

s a a a a
s a a a a
s b b b b

…
…
…

 

n
1 2 3 4

n
1 2 3 4

s c c c c
s d d d d

…
…
…M M M M M

 

n
1 2

n
1

n
1

s e e
s f
s g
Where the coefficients bi are generated 
until all subsequent coefficient are zero. 

1 2 0 3
1

1

a a a ab
a
−

=

1 4 0 5
2

1

a a a ab
a
−

=

1 6 0 7
3

1

a a a ab
a
−

=

Similarly, cross multiply the coefficient 
of the two previous rows to obtain the 
ci, di, etc. 

1 3 1 2
1

1

b a a bc
b
−

=

1 5 1 3
2

1

b a a bc
b
−

=

1 7 1 4
3

1

b a a bc
b
−

=

1 2 1 2
1

1

c b b cd
c
−

=

1 3 1 3
2

1

c b b cd
c
−

=

Until the nth row of the array has been 
completed. Missing coefficient are 
replaced by zeros. The resulting array is 
called the Routh array. The powers of s 
are not considered to be part of the 
array. We can think of them as labels. 
The column beginning with a0  is 
considered to be the first column of the 
array. 
The Routh array is seen to be triangular. 
It can be shown that multiplying a row 
by a positive number to simplify the 
calculation of the next row does not 
affect the outcome of the application of 
the Routh criterion. 

3) Count the number of sign changes in the
first column of the array. It can be
shown that a necessary and sufficient
condition for all roots of

n n 1 1
0 1 n 1 na s a s a s a 0−

−+ +…+ + = to be 
located in the left-half plane is that all
the ai  are positive and all of the
coefficients in the first column be
positive.

Note:  
Let us apply Routh’s stability criterion to 
the following third-order polynomial: 

3
2

2
0 1 3a s a s a s a 0+ + + =  

Where, all the coefficients are positive 
numbers. The array of coefficients becomes 

3s 0a 2a
2s  1a 3a
1s  1 2 0 3

1

a a a a
a
−

0s  3a

The condition that all roots have negative 
real parts is given by 

1 2 0 3a a a a>

Example:  
Consider the following polynomial 

4 2 2s 2s 3s 4s 5 0+ + + + =
Comment on stability. 
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Solution: 
Let us follow the procedure just presented 
and construct the array of coefficients. (The 
first two rows can be obtained directly 
from the given polynomial. The remaining 
terms are obtained from these. If any 
coefficients are missing, they may be 
replaced by zeros in the array.) 
s4 1 3 5 
s3 2 4 0 
s2 1 5 
s1 -6 
s0 5 

The number of changes in sign of the 
coefficients in the first column is two (1 to 
−6&−6 to 5). This means that there are 
two roots with positive real parts. So the 
system is unstable. 

Note:  
The result is unchanged when the 
coefficients of any row are multiplied or 
divided by a positive number in order to 
simplify the computation. 

3.2.2 SPECIAL CASE 1 

If a first-column term in any row is zero, 
but the remaining terms are not zero or 
there is no remaining term, then the zero 
term is replaced by a very small positive 
number and the rest of the array is 
evaluated. 

Example:  
Consider a characteristics equation 

5 4 3 2s s 2s 2s 3s 5+ + + + +  
Determine the stability. 
Solution:  
The array of coefficients is 

5

4

3

2

1

0

   1   2   3
   1   2   5
   0

s
s
s
s
s
s

While solving for coefficient of 3rd row we 
get zero while the other element is -2 i.e. 
non zero so it is special case-1 of routh’s 
array. For further calculations take this 
zero as small +ve number ∈. 

5s  1 2 3 
4s  1 2 5 
3s  ∈ -2 
2s  2 2∈+

∈
5 

1s  24 4 5
2 2

− ∈− − ∈
∈+

0s  5 

Now,  first element of 3rd row is ∈= 0 (will 
be considered as positive) 
First element of 4th row is  

0

2 2lim
∈→

∈+
= +∞

∈
First element of 5th row is 

2

0

4 4 5lim 2
2 2∈→

− ∈− − ∈
= −

∈+
 

There are 2 sign changes  
 to 2 & 2 to 5+∞ − − +  Hence there are 2 

poles on RHS of s-plane. Therefore the 
system is unstable.  

3.2.3 SPECIAL CASE 2 

When all the elements of any row are zero, 
it is special case-2. The Routh’s array can 
be solved by following the procedure 
• Form an auxiliary equation using the

elements of the row just above the row
with all zero elements.

• Take derivative of the auxiliary
equation & the coefficients of the
resultant equation will replace the row
with all zeros.

Example: 
5 4 3 2s 2s 24s 48s 25s 50 0+ + + − − =  

Solution:  
The array of coefficients is 
s5 1 24 -25 
s4 2 48 -50⟵ Auxiliary polynomial 

P(s) 

∈
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s3 0 0 

Here all the coefficients of s3 row are zero. 
Now form the auxiliary equation using the 
coefficients of s4 row. The auxiliary 
equation P(s) is 
P(s) = 2s4 + 48s2 - 50 
Now differentiate the equation we get 

3dp(s) 8s 96s
ds

= +

The terms in the s3 row are replaced by the 
coefficients of the last equation, that is, 8 
and 96. The array of coefficients then 
becomes 
s5 1 24 -25 
s4 2 48 -50 
s3 8 96 dp(s)coefficient of 

ds
←

s2 24 -50 
s1 112.7 0 
s0 -50 

There is 1 sign hence the system is 
unstable. 

Note:  
Whenever there is all zero elements in any 
row, there will be 
1) Either pair of real roots with opposite

sign (1 +ve & 1 –ve)
2) Or complex conjugate roots
3) Or a pair of roots on imaginary axis

This can be found out by solving the
auxiliary equation.
Now, solving the auxiliary equation of
the above example 4 22s 48s 50 0.+ − =
We get   s2 = 1, s2 = -25
or s = ±1, s = ±j5
These two pairs of roots are a part of
the roots of the original equation.
Clearly, the original equation has one
root with a positive real part (s = +1)
also there are 2 roots on imaginary axis.

3.2.4 APPLICATION OF ROUTH’S 
STABILITY CRITERIA  

1) To determine the range of gain K for
stable system.

Example:  
Consider a system with closed loop transfer 
function 

2

C(s) K
R(s) s(s s 1)(s 4) K

=
+ + + +

Therefore, the characteristic equation is 
2s(s s 1)(s 4) K 0+ + + + =  

4 3 2s 5s 5s 4s K 0+ + + + =  
Now, the Routh’s array for this equation is 
s4 1 5 K 
s3 5 4 12 
s2 21/5 K 
s1 84 215K /

5 5
 − 
 

s0 K 
For the system to be stable all the elements 
of the 1st column should be +ve  
i.e. ( )K 0 & 84 / 5 – 5K 4 50 8 / 2⇒ <> > K  
Therefore for stability, K should lie in the 
range 

840 K
25

< <

If K becomes greater than 84/25, the 
system becomes unstable. 

Note: 
In the above example K cannot be greater 
than 84/25, this is the last value of K for 
which the system will be stable & this is 
called as marginal value of K i.e. for K = 
84/25 the system will be marginally stable 
(on the verge of instability) 

2) To determine the frequency of
oscillations

In the above example the auxiliary 
polynomial for marginalK 84 / 25=  is 

( ) 221/ 5  84 / 25s   0+ =
2s 4 / 5⇒ = −

s j 4 / 5⇒ =

+
R(s) C(s)K

s(s +s+1)(s+4)2
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Put s j= ω  
  4 / 5rad / sec∴ =ω  

Example:  
The characteristic equation of a feedback 
control system is  
s3 + 3Ks2 + (K + 2) s + 4 = 0.  
Determine the range of K for which system 
is stable 
Solution:  
Routh’s array is  
s3 1 K + 2 
s2 3K 4 
s1 23K 6K 4

3K
+ −

s0 4 
For stability,  3K > 0 i.e. K > 0 
And 3K2 + 6K – 4 > 0 i.e. K> -1 ± 1.53 
i.e. K > 0.53 
The range of K is thus ∞ > K > 0.53 
Example:  
The open loop transfer function of a unity 
feedback system is given by 

2

KG(s)
s(s 3)(s s 1)

=
+ + +

Determine the values of K that will cause 
sustained oscillations in the closed loop 
system. Also find the oscillation frequency. 
Solution:  
The characteristic equation is  

2

K1 G(s) 1 0
s(s 3)(s s 1)

+ = + =
+ + +

 

s (s + 3) (s2 + s + 1) + K = 0 
s4 + 4s3 + 4s2 + 3s + K = 0 
The Routh’s array is   
s4 1 4 K 
s3 4 3 0 
s2 13

4
K 

s1 39 4K
4

13
4

 − 
 

s0 K 
The condition for system stability is 

K > 0 & 39 4K 0
4

 − > 
 

Therefore for stability, K should lie in the 
range 

When K = 39
16

here will be a zero at the first 

entry in the fourth row. This will indicate 
presence of symmetrical roots, which as 
shown below, will be pure imaginary. 

marginalK 39
16

= will cause sustained 

oscillations. 
The subsidiary equation of third row for

K 39
16

=  , is 213 39s 0
4 16

+ =

s = ± j 0.75 
Thus the frequency of sustained 
oscillations is 0.75 rad/sec 

Example:  
s6 + 3s5 + 4s4 + 6s3 + 5s2 + 3s + 2 = 0 
The Routh’s array is  
s6 1 4 5 2 2s4 + 4s2 + 2 = 0 
s5 3 6 3 s4 + 2s2 + 1 = 0 
s4 2 4 2 4s3 + 4s = 0 
s3 0 0 0 s3 + s = 0 

1 1 2s2 + 2 = 0 
s2 + 1 = 0 

s2 2 2 2s = 0 
s1 0 0 
 2  
s0 1  
There are two rows which become zero 
and there is no sign change in the first 
column of the Routh’s array.  
Note:  
We cannot comment on stability until the 
roots of auxiliary equation are not known.  
Now the auxiliary equations is 
s4 + 2s2 + 1= 0 
⇒ s j& s j= ± = ±
As there are repeated roots on imaginary 
axis, the system is unstable. 

Example:  
A feedback control system has an open loop 
transfer function of  
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s

2

KeG(s)H(s) = 
s(s 2s 1)

−

+ +
 

Determine the maximum value of K for the 
close loop stability 
Solution:  
For low frequencies 
e-s = (1-s) 

2

K(1 s)G(s)H(s) = 
s(s 2s 1)

−
+ +

 

2

K(1 s)1 G(s)H(s) = 0
s(s 2s 1)

−
+ =

+ +
 

∴   2s(s 2s 1) K(1 s) 0+ + + − =  
3 2s 2s s K Ks 0+ + + − =   
3 2s 2s s(1 K) K 0+ + − + =  

The Routh’s array is 
s3 1 (1-K) 
s2 2 K 
s1 (2(1-K)-

K)/2 
 

s0 K  
For stability K > 0 and  
2(1 – K) – K > 0 or  2 – 3K > 0 

3K
2

<    

Hence the restriction on K is 

0 < 3K
2

<  

 
3.3 ROOT LOCUS 
 
Root locus analysis is a graphical method 
for examining how the roots of a system 
change with variation of a certain system 
parameter, commonly gain with in 
a feedback system. This is a technique used 
as a stability criterion in the field of control 
systems developed by Walter R. 
Evans which can determine stability of the 
system. 
Consider the closed loop system: 
 

 
The open loop poles of the system are: 
s 0 &  S 2= = −  

The closed-loop transfer function is: 
( )
( ) 2

C s K
R s s 2s K

=
+ +

 

The characteristic equation is: 
2s 2s K 0+ + =  

The roots of the characteristics equation 
(i.e. closed loop poles) are: 

22 2 4K 4 4KS 1
2 2 2

− −
= − ± = − ±  

From the above equations, it is clear that 
the roots depend on gain K of the system. If 
the gain is varied from 0 to ∞, the closed 
loop poles will also change. Following table 
shows the variation of closed loop poles 
with gain K: 

 
When all the values of closed loop poles are 
plotted on a graph we get: 

 
The locus of the roots of the closed loop 
system (closed loop poles) as a function of 
a gain of K, as it is varied from 0 to infinity 
results in Root-Locus. 
 
3.3.1 ANGLE CONDITION 
 
Consider a characteristics equation 
1 ( ) ( ) 0+ =G s H s  

( ) ( ) G s H s 1 j0⇒ = − +  
Now, ( ) ( ) ( ) oG s H s 2q 1 180∠ = ± +  
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Note:  
1 j0− +  is a point on –ve real axis which can 

be traced at the angles 180 54, ,0 900± ± ±o o o

……… with respect to the +ve real axis. 
Angle condition is used to whether a point 
in s-plane lies on root locus or not. 

Example:  
Check whether the point s 0.75= − lies on 
the root locus of   

( )( )
KG(s)H(s)

s s 2 s 4
=

+ +
or not. 

Solution:  
Put s 0.75= − in the given transfer function 

( )( )
KG(s)H(s)

0.75 0.75 2 0.75 4
=
− − + − +

Now, 
o

o
o o o

0G(s)H(s) 180
180 .0 .0

∠ = = −

Therefore s 0.75= − lies on root locus. 

3.3.2 MAGNITUDE CONDITION 

Consider a characteristics equation 
1 G(s)H(s) 0+ =  

( ) ( )G s H s 1 j0⇒ = − +

Now, ( ) ( )G s H s 1=
Once it is confirmed that a point s lies on 
the root locus using angle condition, we can 
find the corresponding gain K of the system 
at that point. 

Example:  
Find the gain of the system with transfer 

Function 
( )( )

KG(s)H(s)
s s 2 s 4

=
+ +

at a 

point s 0.75= − . 
Solution:  
In the last example we confirmed that 
s 0.75= −  lies on the root locus & now the 
corresponding gain can be found out using 
magnitude condition. 
Put s 0.75= − in the given transfer function 

( )( )
KG(s)H(s)

0.75 0.75 2 0.75 4
=
− − + − +

Now, 

( ) ( )
s 0.75

KG s H s 1
0.75 1.25 3.25=−

= =
× ×

 

∴ K 3.04=

3.3.3 RULES FOR CONSTRUCTING ROOT 
LOCUS 

Rule 1: Symmetry 
The root locus is always symmetrical about 
real axis. 

Rule 2: Number of branches 
The number of branches is equal to the 
number of poles of the open-loop transfer 
function. 

e.g. 
( )

1G(s)
s s 2 (s 4)

=
+ +

 the poles are at 

0, 2, 4− −  As the total number of open loop 
poles is 3, the number of branches of root 
locus is 3. 

Rule 3: Real-axis root locus 
If the total number of open loop poles and 
zeros to the right of any point on the real 
axis is odd, then this point lies on the root 
locus. 

e.g. sG(s)
(s 3)

=
+

poles s 3 &  zeroes s 0⇒ = − ⇒ =  

a) To the point s 1= − , on the right side
there is 1 open loop zero & no pole i.e.
total = 1 + 0 = 1 which is odd. Hence the
point s 1= −  lies on the root locus.

b) To the point 𝑠𝑠 = −5, on the right side
there is 1 open loop zero & 1 open loop
pole i.e. total = 1+ 1 = 2 which is even.
Hence the point 𝑠𝑠 = −5 does not lie on
the root locus.

Rule 4:  Root locus end-points 
The locus starting point (K=0) are at the 
open-loop poles and the locus ending 
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points (K=∞) are at the open loop zeros. If 
there P number of open loop poles & Z 
number of open loop zeros, then m number 
of branches will end at zeros and 𝑃𝑃 − 𝑍𝑍 
branches terminate at infinity. 

e.g. ( ) ( )( )
s 3G s

s s 2 s 4
+

=
+ +

poles s 0, 2, 4 ; total 3⇒ = − − =  
zeroes s 3 ; total 1⇒ = − =  
There will be 3 (no. of open loop poles) 
root locus branches, out of which 1 (no. of 
open loop zero) branch will terminate at a 
zero &3 − 1 = 2 number of branches will 
terminate at infinity. 

Rule 5: Slope of asymptotes 
The branches of root locus which 
terminates at infinity follows the path 
along the straight line called asymptotes. 
The number of a symptotes P Z.= −  
The angles of asymptotes with +ve real axis 

are: 180(2q 1)
(P Z)

+
∅ =

−
Where, q = 0, 1, 2, 3... (P-Z-1) 

e.g. ( ) ( )( )
s 3G s poles

s s 2 s 4
+

=
+ +

s 0, 2, 4⇒ = − −
Total = 3 & zeroes s 3total 1⇒ = − =   
The number of asymptotes is 3 1 2.− =  
The angles of asymptotes with real axis are: 

o
1

180(2 0 1) 90
(3 1)
× +

∅ = =
−

2
180(2 1 1) 270

(3 1)
× +

∅ = =
−

o

Rule 6: Intersection of asymptotes 
The asymptotes for the root locus 
intersects at a point on the real axis called 
centroid & it is given by 

( ) ( )real part of poles of G s H(s) real part of  zeros of G s H(s)
(P Z)

−
σ =

−
∑ ∑

e.g. 
( )

s 3G(s)
s s 2 (s 4)

+
=

+ +

( )4 2 0 ( 3) 6 3 3
(3 1) 2 2

− − − − − − + −
σ = = =

−

Rule 7:  Real Axis Breakaway and Break-
in points: 
A breakaway point is a point on root locus 
where multiple roots of the characteristics 
equation occur. Numerous root loci appear 
to break away from the real axis as the 
system poles move from the real axis to the 
complex plane. At other times the loci 
appear to return to the real axis as a pair of 
complex poles becomes real. 

The figure shows a root locus leaving the 
real axis between -1 and −2 and returning 
to the real axis between +3 and +5. The 
point where the locus leaves the real axis,

1−σ , is called the breakaway point, and the 
point where the locus returns to the real 
axis, 2σ , is called break-in point.  
Note: 
At the breakaway or break-in point, the 
branches of the root locus form an angle of 
180/n with the real axis, where n is the 
number of closed loop poles arriving or 
departing from the single breakaway or 
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break-in point on the real axis. Thus for the 
poles shown in the figure the branches at 
the breakaway point form 90°angles with 
the real axis. 

Procedure to find breakaway or break-
in point: 

1) Let KG(s)
s(s a)

=
+

Write the characteristics equation for 
the above transfer function: 

2s as K 0+ + =  
2) Find the expression for K

2K (s as)= − +

3) Find dK
ds

 & equate it to zero. 

( )dK 2s a 0
ds

= − + =

4) The roots of the dK 0
ds

=  gives the 

breakaway or break-in point. 
Root is s a / 2= − , hence breakaway 
point is a / 2− . 

5) For the breakaway or break-in point if
G(s) satisfies angle condition, it is a
valid break away point.

Note:  
For a point on root locus between two 
adjacently placed poles, there exists a 
breakaway point if the number of poles & 
zeros to the right hand side is even. 

Example 
Determine the breakaway points for the 

root locus of  
( )( )

KG(s)H(s)
s s 1 s 4

=
+ +

Solution:  
The characteristics equation is 

3 2s 5s 4s K 0+ + + =   
Now, 3 2K s 5s 4s= − − −  

∴ 2dK 3s 10s 4 0
ds

= − − − =

Roots of this equation are  
s 0.46 & s 2.86= − = −  
Now, substituting these values in the 
expression of K 

K 0.88 for s 0.46= + = −  
K 6.06 for s 2.86= − = −  
As K is +ve for s = −0.46, it is a valid 
breakaway point & s 2.86= −  is not a valid 
breakaway point. 

Rule 8:  Intersection with imaginary axis 
The jω axis crossing is a point on the root 
locus that separates the stable operation of 
the system from the unstable operation. 
The value of ω at the axis crossing yields 
the frequency of oscillation. The 
intersection of root-locus with imaginary 
axis can be obtained by solving the 
auxiliary equation from the Routh’s array. 
e.g. If the auxiliary equation is 2s 4 0+ = , 
solving for s we get s j2= ± . 
Therefore the root locus intersects at 

j2 & j2+ − . 
Example:  
For the system of the following figure, 
find the frequency and gain, K, for which  
the root locus crosses the imaginary axis.  
For what range of K is the system stable? 

Solution:  
The closed loop transfer function for the 
system is 

( )4 3 2

K(s 3)T(s)
s 7s 14s 8 K s 3K

+
=

+ + + + +
The routh’s array will be 

4s  1 14 3K 
3s 7 8+K 
2s  90 -K 21K 

1s  
2K 65K 720

90 K
− − +

−
0s  21 K 

For system to be stable all the elements of 
1st column should be positive. 
i.e. 21K 0>  
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K 0⇒ > and 2K 65K 720 0− − + >
K 9.65⇒ <

For marginal stability, marK 9.65=  
Auxiliary equation is: 
( ) 290 K s 21K 0− + =  

∴ 280.35s 202.7 0+ =  
Solving equation we get, s j1.59= ±  
Therefore the root locus touch the 
imaginary axis at j1.59±  for marK 9.65= . 

Rule 9:  Angles of Departure and Arrival 
In order to sketch the root locus more 
accurately, we want to calculate the root 
locus departure angle from the complex 
poles and the arrival angle to the complex 
zeros.  
The angle of departure & arrival are given 
by o

d 180∅ = −∅  and o
a 180∅ = +∅

Where  P Z∅ = ∅ − ∅∑ ∑
P∅∑ is the angle made by the other poles

with the pole at which angle of departure is 
to be calculated or with the zero at which 
angle of arrival is to be calculated. 

Z∅∑ is the angle made by the other zeros
with the pole at which angle of departure is 
to be calculated or with the zero at which 
angle of arrival is to be calculated. 

Example:  
Given the unity feedback system of 
following figure, find the angle of departure 
from the complex poles and sketch the root 
locus. 

Solution:  
Using the poles and zeros of  
( ) 2G s K(s 2) / [(s 3)(s 2s 2)]= + + + +  

as plotted in the figure, we calculate the 
sum of angles drawn to a point ε close to 
the complex pole, 1 j1− + , in the second 
quadrant.  

Here 
o

2θ 90= , 

1 o
4

1θ tan 26.56
2

−  = = 
 

 & 

1 o
3

1θ tan 45
1

−  = = 
 

Now, P Z 2 4 3θ θ (θ )∅ = ∅ − ∅ = + −∑ ∑
( )o o o o90 26.56 45 71.56= + − =

o o o
d 180 180 71.56∴∅ = −∅ = −

108.4°=  

Example 
Determine number asymptotes for 

(s 1)(s 4)G(s)H(s)
(s 3)(s 5)
+ +

=
+ +

. 

Solution 
No. of open loop poles n = 2 
No. of open loop zeros m = 2 
No. of root loci ending on 2 2 0∞ = − =

No. of asymptotes = 0 
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Example 

Given that ( ) ( )( )
KKG s

s s 2 s 4
=

+ +
Sketch 

the root locus of 1 + KG(s) = 0 and compute 
the value of K that will yield a “dominant” 
second order behavior with a damping 
ratio, ξ 0.7= . 
Solution 
We have,  n = 3 and m = 0.  
Open loop zero: none 
Open loop poles: s = 0, −2, −4 
1) As= 3, the number of root locus

branches=3.
2) n – m = 3 – 0 = 3, therefore 3 branches

will terminate at infinity.
3) Number of asymptotes = 3.
4) Angle of asyptotes are

0
0

1
(2 0 1) 180 60

3
× + ×

φ = =

0
0

2
(2 1 1) 180 180

3
× + ×

φ = =

0
0

3
(2 2 1) 180 300

3
× + ×

φ = =

5) Centroid ( )4 2 0 0
σ 2

3
− − − −

= = −

6) Identifying the root locus branches

7) Crossing the imaginary axis
The characteristics equation is

3 2s 6s 8s K 0+ + + =
s3 1 8 0 
s2 6 K 
s1 48 K

6
−

s0 K 
When K = 48, the s1 row will have all 
the elements zero. Auxiliary equation 
will be 26s 48 0+ =

∴ s j2 2=
8) Breakaway point:

The breakaway point is the solution of
dK 0
ds

=

( )( ) 3 2K s s 2 s 4 (s 6s 8s)= − + + = − + +

2dK (3s 12s 8)
ds

= − + +

Solving we get s 0.845= −

Example 
K(s 1)(s 3)G(s)H(s)
(s 4)(s 5)

+ +
=

+ +
find Break away 

point/Break in point. 
Solution:  
The characteristics equation is 
1 + G(s)H(s) = 0 

K(s 1)(s 3)  1+ 0
(s 4)(s 5)

+ +
∴ =

+ +
2

2

s 9s 20K
s 4s 3
+ +

=
+ +

( )( ) ( )( ){ }
( )

2 2

22

s 4s 3 2s 9 s 9s 20 2s 4dk 0
ds s 9s 20

+ + + − + + +
= =

+ +

( )1s 2.43, 4.3= − −

Both the points satisfy angle condition 
hence they are valid break away 
point/break in point. s 4.3= − lies between 2 
poles hence it is a breakaway point while 
s = −2.43 lies between 2 zeros hence it is 
break in point. 

Example: 
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Sketch the root loci for the system shown in 
Figure 

Solution: 
1) No of open loop poles P 3= = , s 0,=

0, 3.6−
2) No of open loop zeros Z 1= = , s 1= −
3) No of root locus branches P 2= =
4) No of branches terminating at infinity

P Z 3 1 2= − = − =
5) Number of asymptotes = 2

( )0 0 3.6 ( 1)
σ 1.3

2
+ − − −

= = −  

Angle of asymptotes are +90 & -90 
6) Intersection with jω axis characteristics

equation is 3 2s 3.6s Ks K 0+ + + =
Routh’s array will be

3s  1 K 
2s  3.6 K 

1s  
2.6K
3.6

0s  K 
For stability K > 0 & 2.6K/3.6 > 0 

marK 0⇒ =
Auxiliary equation from s2is 

23.6s K 0+ =  
23.6s 0 0+ = 2s 0 s 0,0⇒ = ⇒ =  

Therefore root locus will touch 
imaginary axis at origin. 

7) Break away point
The characteristics equation is

3 2s 3.6s Ks K 0+ + + =
2s (s 3.6)K
(s 1)
+

= −
+

( )( )2 3 2

2

3s 7.2s s 1 (s 3.6s )dK 0
ds (s 1)

+ + − +
= − =

+
3 2s 3.3s 3.6s 0+ + =  

Solving we get, s 0=  
s 1.65 0.9367 j= − +   
s 1.65 0.9367 j= − −  

Point s =  0 corresponds to the actual 
breakaway point. But points 
s 1.65 0.9367 j= − + & s 1.65 0.9367 j= − −  are 
neither breakaway nor break-in points, 
because they do not satisfy angle 
condition. 

Example 
For a unity feedback system the open Loop 
transfer function is given below 

2

KG(s)
s(s 6s 25)

=
+ +

Draw the root locus 

for 0 K≤ ≤ ∞ . 
Solution:  
1) No of poles = P = 3

s 0, 3 4j, 3 4j= − + − −
2) No of zeros Z 0= =
3) No of root locus branches P 3= =
4) No of branches terminating at infinity

P Z 3 0 3= − = − =
5) Number of asymptotes

P Z 3 0 3= − = − =

Centroid ( )0 3 3 0
σ 2

3
− − −

= = −

Angle of asyptotes are 
0

0
1

(2 0 1) 180 60
3

× + ×
φ = =

0
0

2
(2 1 1) 180 180

3
× + ×

φ = =

0
0

3
(2 2 1) 180 300

3
× + ×

φ = =

6) Intersection with jω axis
Characteristics equation is

3 2s 6s 25s K 0+ + + =
Routh’s array will be
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3s  1 25 
2s  6 K 
1s  

150
6

K−

0s  K 
For stability K 0 & 150 K 0> − >  

marK 150 K 150⇒ < ⇒ =
Auxiliary equation from s2 row will be 

26s 150 0+ =  
solving we get s j5= ±  
therefore the root locus will touch 
imaginary axis at ±j5. 

7) Breakaway point
From the charcteristics equation

3 2K (s 6s 25s)= − + +

( )2dK 3s 12s 25 0
ds

= − + + =

solving we get, s 2 j2.0817, 2 j2.0817= − + − −  
Both the points does not satisfy the 
angle condition hence they are not valid 
breakaway points. 

8) Angle of departure
The angle of departure from the
complex pole in the upper half s plane is

o o o o
d 180 (126.87 90 ) 36.87∅ = − + = −

Note: 
1) Addition of a pole pulls root locus

towards right hand side & the stability
of the system decreases.

1

K
sτ 1+

( )1 2

K
sτ 1 (sτ 1)+ +

1-
1

1-
2

r1

r2

j

( )1 2

K
s sτ 1 (sτ 1)+ +

2) Addition of a zero pulls root locus to the
left & stability of the system increases

( )
( )

a

1 2

K sτ 1
s sτ 1 (sτ 1)

+
+ +

3.4 MINIMUM PHASE SYSTEM 
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A system whose transfer function has all 
the poles and zeros in the left half of the s-
plane is called as minimum-phase system. 

 e.g. 1

2

1 sTG(s)
1 sT
+

=
+

3.5 NON MINIMUM PHASE SYSTEM 

A system whose transfer function has one 
or more zeros in the right half s-plane is 
known as non minimum phase system. 

e.g. 1

2

1 sTG(s)
1 sT
−

=
+

Note: 
A common example of a minimum phase 
element is transportation lag which has the 
transfer function 

sTG(s) e−=
Put s jω=
∴ jωTG(jω) e−=

Now, ( )G jω 1=

and ( )G jω 57.3ωT∠ = −

3.6 ALL PASS SYSTEM 

An all pass system has a transfer function 
having a pole-zero patterns which is anti 
symmetric about the imaginary axis, i.e. for 
every pole in the left half plane; there is a 
zero in the mirror image position. A 
common example of such a transfer 
function is 

1 j TG( j )
1 j T
− ω

ω =
+ ω

Pole-zero configurations is shown in figure: 

It has a magnitude of unity at all 
frequencies and a phase angle (-2tan-1ωT) 
which varies from 0o to -180o as ω is 
increased from 0 to ∞.  
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Q.1 The feedback control system in the 
figure is stable. 

a)for all K 0≥        b)only is K 0≥   
c)onlyif 0 K 1≤ <    d)only if 0 K 1≤ ≤  

          [GATE-2001] 

Q.2 The phase margin of a system with 
the open-loop transfer function 

( ) ( ) (1 s)G s H s
(1 s)(2 s)

−
=

+ +
a) 0° b) 63.4°
c) 90° d) ∞

          [GATE-2002] 

Q.3 The system shown in the figure 
remains stable when 

a) K 1< − b) 1 K 1− < <
c) 1 K 3< < d) K 3< −

          [GATE-2002] 

Q.4  The characteristic polynomial of a 
system is
( ) 5 4 3 2q s 2s s 4s 2s 2s 1= + + + + + . The

system is  
a)stable       b)marginally stable 
c)unstable       d)oscillatory  

[GATE-2002] 

Q.5 The gain margin for the system with 
open loop transfer function 

( ) ( ) 2

2(1 s)G s H s
s
+

= is

a) ∞ b) 0

c)1 d) -∞
          [GATE-2004] 

Q.6 The open-loop transfer function of a 
unity feedback system is  

( ) ( )2

KG s
s s s 2 (s 3)

=
+ + +

The range of K for which the system 
is stable is  

a) 21 0
4
> >K  b) 13 K 0> >

c) 21 K
4
< < ∞ d) 6 K− < < ∞

          [GATE-2004] 

Q.7 For the polynomial 
( ) 5 4 3 2P s s s 2s 2s 3s 15= + + + + + , the

number of roots which lie in the 
right half of the s-plane is  
a)4 b)2 
c)3 d)1 

[GATE-2004] 

Q.8  The positive values of “K” and “a” so 
that the system shown in the figure 
below oscillates at a frequency of 2 
rad/ sec respectively are  

a)1, 0.75 b)2, 0.75 
c)1, 1 d)2, 2 

[GATE-2006] 

Common Data for Questions Q.9 & Q.10:  
Consider a unity-gain feedback control 
system whose open-loop transfer function 

is ( ) 2

as 1G s
S
+

=

GATE QUESTIONS(EC)(Stability Analysis) 
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Q.9 The value of “a” so that the system 
has a phase–margin equal to / 4π  is 
approximately equal to  
a)2.40 b)1.40 
c)0.84 d)0.74 

[GATE -2006] 
Q.10 With the value of “a” set for phase–

margin of / 4π , the value of unit–
impulse response of the open-loop 
system at  t 1=   second is equal to  
a)3.40 b)2.40 
c)1.84 d)1.74 

[GATE -2006] 

Q.11 If the closed-loop transfer function 
of a control system given as

( ) ( )
s 5T s

s 2 (s 3)
−

=
+ +

, then it is 

a) an unstable system
b) an uncontrollable system
c) a minimum phase system
d) a non-minimum phase system

[GATE -2007] 

Q.12 A certain system has transfer 

function ( ) 2

s + 8G s =
s + αs - 4

, where α 

is a parameter. Consider the 
standard negative unity feedback 
configuration as shown below.  

Which of the following statements is 
true? 
a) The closed loop system is never

stable for any value of α
b) For some positive values of α the

closed loop system is stable, but
not for all positive values

c) For all positive values of, the
closed loop system is stable

d) The closed loop system is stable
for all values of, both positive
and negative

[GATE -2008] 

Q.13 The number of open right half plane 
poles of 

( ) 5 4 3 2

10G s =
s +2s +3s +6s +5s+3    

is  

a) 0 b) 1
c) 2 d) 3

[GATE -2008] 

Q.14 The feedback system shown below 
oscillates at 2rad/s when 

a)K=2 and a=0.75  b)K=3 and a=0.75 
c)K=4 and a=0.5     d)K=2 and a=0.5 

[GATE -2012] 

Q.15 The forward path transfer function 
of a unity negative feedback system 

is given by  ( ) ( )
K

s 2 (
s

)
G

s 1+
=

−
The value of K which will place both 
the poles of the closed-loop system 
at the same location, is ________ 

[GATE-2014] 

Q.16 Consider a transfer function 

( )pG s =
( )

2

2

ps 3ps 2
s 3 p s (2 p)

+ −
+ + + −

with 

pa positive real parameter. The 
maximum value of p until which pG
remain stable is _______. 

[GATE-2014] 

Q.17 Match the inferences X, Y, and Z, 
about a system, to the 
corresponding properties of the 
elements of first column in Routh's 
Table of the system characteristic 
equation.  
X: The system is stable...  
P: ... when all elements are positive  
Y: The system is unstable... 
Q: ... when any one element is zero  
Z: The test breaks down...  
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R: ... when there is a change in sign 
of coefficients 

a) X→P, Y→Q, Z→R
b) X→Q, Y→P, Z→R
c) X→R, Y→Q, Z→P
d) X→P, Y→R, Z→Q

 [GATE-2016] 

Q.18 The transfer function of a linear 
time invariant system is given by
( ) 4 3s 5H s s s 22 5− − −= .

The number of zeros in the right half 
of the s-plane is __________.  

[GATE-2016] 

Q.19 The first two rows in the Routh 
table for the characteristic equation 
of a certain closed-loop control 
system are given as 

3

2

1 (2K 3)S
2K 4S

+

The range of K for which the system 
is stable is  
a) —2.0 <K<0.5 b) 0<K<0.5
c) 0< K <∞ d) 0.5 < K <∞

 [GATE-2016] 

Q.20 Which one of the following options 
correctly describes the locations of 
the roots of the equation s4+s2+1=0 
on the complex plane? 
a) Four left half plane (LHP) roots.
b) One right half plane (RHP) root,
one LHP root and two roots on the 
imaginary axis. 
c) Two RHP roots and two LHP
roots. 
d) All four roots are on the
imaginary axis. 

         [GATE-2017-01] 

Q.21 Consider ( ) 3 2
2 1 0p s s a s a s a= + + +

with all real coefficients. It is known 
that its derivative ( )p ' s has no real 
roots. The number of real roots of 
( )p s is

a) 0 b) 1 c) 2 d) 3
[GATE-2018] 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
(c) (d) (d) (c) (a) (a) (b) (b) (c) (c) (d) (c) (c) (a) 2.25 
16 17 18 19  20  21 
2 (d) 3 (d) (c)  (b) 

ANSWER  KEY: 
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Q.1 (c) 
1 2

1 2

G GT.F.
1 G G H

=
+

( )
( )
( )

2

2

K(s 2)
s 2

K s 2 (s 2)
1

s 2

−
+

=
− −

+
+

( ) ( )2 2
K(s 2)

s 2 K s 2
−

=
+ + −

∴ char. equation 
2 2s 4 4s Ks 4Ks 4K= + + +−+  

( ) ( )21 K s K 4 4K s 4K 4 0+ + − + + =
Routh table is  
1) 1 K4K 4+ +
2) 4 4K−

         0⇓  
4(1 K)−

3) 4(K 1)+
For system to be stable
1 K 0− >
1 K K 0&> ≥ (Given in question)
 From 3rd row 
K 1 0 K 1> − ∴ ≤ <  

Q.2 (d) 
( ) ( )gwhere G s H s 1ω =  is 

( )
2

2 2

1 s 1 1
1 s (2 s) 1 4

ω
ω ω

− +
= =

+ + + +
 

24 1ω+ =  
24 1ω⇒ + =

2 3ω = −  (imaginary) 
So no gain crossover frequency 

PM∴ = ∞  

Q.3 (d) 
K

Y(s) Ks
3 KR(s) s (3 K)1
s s

= =
− + − + 

 

For system to be stable, 
3 0K+ <  

3K⇒ < −

Q.4 (c) 
Routh table is 

5

4

3

2

1

0

2(1) 4(2) 2(1)
1 2 1
0 0 0

s
s
s
s
s
s

( )4 2d s 2s 1 0
ds

∴ + + =

34s 4s 0+ =  
s j,s j= ± = ±  

( )2d s 1 0
ds

+ =

2 0s = s 0⇒ =  
Double roots on imaginary axis so 
system is unstable.  

Q.5 (a) 
( ) ( ) 1G s H s 180° tan ω∠ −= − +

For 1
Φω 180° tan ω 180°−= − + = −     

ω 0= ( ) ( )
2

2

2 1 ωG s H s
ω

∞
+

= =  

1G.M 0
∞

= =

In db G.M ∞=  

EXPLANATIONS 
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Q.6 (a) 

( ) ( )2

KG s
s s s 2 (s 3)

=
+ + +

( )H s 1=
( ) ( )1 G s H s+

( )3 2 2

K1
s s 3s s 3s 2s 6

= +
+ + + + +

4 3 2

3 2

s 4s 5s 6s K
s(s 4s 5s 6)
+ + + +

=
+ + +

( ) ( )1 G s H s 0+ =
s4 1 5 K 
s3 4 6 
s2 7 14

2 4
 
 
 

K 

s1 7 6 4K
2

7
2

× −
0 

s0 K 
For system to be stable, K>0 

( ) 221 4K 0
7

− >  

21 21K K
4 4
> ⇒ <

21 K 0
4

∴ > >  

Q.7 (b) 
( ) 5 4 3 2P s s s 2s 2s 3s 15= + + + + +

s5 1 2 3 
s4 1 2 15 
s3 0(∈) -12 0 
s2 2 12∈+

∈

15 0 

s0 ( )12 2 12
15

2 12

− ∈+
− ∈

∈
∈+ 

 ∈ 

2 12 t+
=




Let    be a small positive no. 

12t 15
t

− − 

15s 12
t

⇒ − −


s° 15 
∴Two sign change from 

2s to s and s to s°
∴2 roots on RHS of s plane. 

Q.8 (b) 
( ) ( )1 G s H s+

3 2

K(s 1)1 0
s as 2s 1

+
= + =

+ + +
 

3 2

3 2

s as 2s 1 Ks K 0
s as 2s 1

+ + + + +
⇒ =

+ + +
( )3 2s as 2 K s K 1 0+ + + + + =

3

2

s 1 2 K
s a K 1

+
+

( )a 2 K (K 1)
s

a
+ − +

For oscillation, 
( )a 2 K (K 1)

0
a

+ − +
=  

K 1a
K 2
+

=
+

2as K 1 0+ + =  
2 2s jω,s ω 4= = − = −  

4a K 1 0⇒ − + + =
K 1 K 1 K 1a K 2

4 4 K 2
+ + +

= ⇒ = ⇒ =
+

 

a 0.75=

Q.9 (c) 
πPM
4

=

1180 tan aω 180°
4

−⇒ + − =
π  

tan aω aω 1
4
= ⇒ =

π  

Now for gain crossover frequency 

G(s) 1=  
2 2

2

1 a ω 1
ω
+

⇒ =

21 1 ω+ =  (as aω 1= ) 
2ω 2=  
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( )1/4ω 2=

1/4

1a 0.84
2

= =  

Q.10 (c) 

( ) 2

0.84s 1G s
s
+

=

( ) ( )H s 1,R s 1= =

( ) ( )C s G s .R(s)∴ =

( ) 2

0.84s 1C s
s
+

=

( ) 1
2

1 0.84sc t L
s

− + =   
1

2

1 0.84L
S S

−  = +  
( ) [ ]c t t 0.84 U(t)= +

At   ( )t 1,c t 1 0.84 1.84= = + =

Q.11 (d) 
As there is a right half zero, the 
system is a non-minimum phase 
system. 

Q.12 (c) 
Closed loop gain is 

2

G(s) s 8
1 G(s) s αs 4 s 8

+
=

+ + − + +
Characteristic equation 
( ) ( )2q s s α 1 s 4= + + +

Closed loop system is stable only for 
α 1> − .Therefore, for all positive of, 
the closed loop system is stable. 

Q.13  (c) 
Characteristic equation  
( ) 5 4 3 2q s s 2s 3s 6s 5s 3= + + + + +

Putting    1s
z

=

( )' z 5 4 3 2q 3z 5z 6z 3z 2z 1= + + + + +  
Routh array is  

Since sign changes twice in Routh–
array therefore, there are two poles 
on right half plane. 

Q.14 (a) 
Characteristic equation is 

( ) ( )1 G s H s 0+ =

3 2

k(s 1)1 0
s as 2s 1

+
+ =

+ + +
 

( ) ( )3 2s as 2 k s 1 k+ + + + +
= 0 
Routh array for this is  

( )

3

2

1

0

s
1 (2 k)

s
a (1 k)

s
a 2 k (1 k)

s
a

(1 k)

+
+

+ − +

+

For oscillation ( )a 2 k (1 k)
0

a
+ − +

=  

1 ka
2 k
+ ⇒ =  + 

 

Now  
( )2as 1 k 0+ + =

-aω2 + (1 + k) = 0 
Given            ω 2rad / sec=  

( )4a 1 k 0− + + =

( )(1 k)4 1 k 0
(2 k)
+

− + + =
+

( ) ( ) ( )4 1 k 2 k 1 k 0− + + + + =

( ) ( )1 k 2 k 4 0 + + − = 
k 1,2= −  
But k 1= − is not possible as system 
will not oscillate for this as  
a 0=  so   k 2=  
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1 k 3a 0.75
2 k 4
+

= = =
+

Q.15 (2.25) 

Given ( ) ( )
K

s
G 

1)
s  

2 (s+ −
=

H(s)=1 
Characteristic equation: 

( ) ( )1 G s H s  0+ =

( )
K 0

s 2 ( )
1

s 1
=

+ −
+

The poles are 1,2 1 9S 4K
4

= − ± −

If 9
4

  K 0− = , then both poles of the 

closed loop system at the same 
location.  

So, 9 25
4

K 2.⇒=  

( )
1 t
0 1

t =  
 
 

φ

Q.16 (2) 

Given  ( ) ( )
2

p 2

ps 3ps 2G s
s 3 p s (2 p)

+ −
=

+ + + −
By R - H criteria 
The characteristic equation is 

( ) ( )2s 3 p s 2 p 0+ + + − =

i.e. ( ) ( )2s 3 p s 2 p 0+ + + − =

By forming R-H array, 

For stability, first column elements 
must be positive and non-zero 
i.e. (1)(3 + p) > 0 ⟹ p > - 3 
and (2)(2-p) > 0 ⟹ p < 2 
i.e. – 3< p< 2 
The maximum value of p unit which 

pG  remains stable is 2 

Q.17 (d) 

Q.18 (3) 
We can proceed here by taking this 
polynomial as characteristic equation 
and conclusion can be draw by using 
RH criterion. As we are interested to 
know how many roots are lying on 
right half of s plane. 

→  The number of roots i.e. the 
number of zeros in this case in right 
half of plane is number of sign 
changes  
 →  Number of sign changes = 3 

Q.19 (d) 

From the table we can find 
characteristic equation  

( )23 2ks 2k 3 s  0S 4+ + + + =

For stability ( )( )2k 2k 3 4+ >
24k 6k 4 0 4+ − >  

( )(k- )1
2

k 2 0+ >   

So the conditions are 1k  
2

> and 

k 2> −  combining k 2> −  

Q.20 (c) 

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



Q.21 (b) 
Given  
( ) 3 2

2 1 0p s s a s a s a= + + +  

( ) 2
2 1p ' s 3s 2a s a= + +

Given ( )p ' s  has no real roots. 

We know that, if ( )p s has 'n ' real 

roots, then ( )p ' s will have at least 'n 
−1' real roots. 
Hence, from the given condition, 
n 1 0− =  
n 1=  
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Q.1 The root-locus diagram for a closed-
loop feedback system is shown in 
the figure. The system is over damped. 

a) only if 0 K 1≤ ≤
b) only if 1 K 5< <
c) only if K 5>
d) if 0 K 1or K 5≤ < >

          [GATE -2001] 

Q.2 Which of the following points is NOT 
on the root locus of a system with 
the open–loop transfer function

( ) ( ) KG s H s
s(s 1)(s 3)

=
+ +

?  

a) s j 3= − b) s 1.5= −
c) s 3= − d) s = −∞

[GATE -2002] 

Q.3 The root locus of the system 

( ) KG s H(s)
s(s 2)(s 3)

=
+ +

has the

break-away point located at 
a)(-0.5,0) b)(-2.5478,0) 
c)(-4,0) d)(-0.784,0) 

[GATE -2003] 

Q.4 Given ( ) KG s H(s)
s(s 1)(s 3)

=
+ +

, the 

point of intersection of the 
asymptotes of the root loci with the 
real axis is  
a)-4  b)1.33 
c)-1.33 d)4 

[GATE -2004] 

Q.5 A unity feedback system is given as 

( ) K(1 s)G s .
s(s 3)

−
=

+
 Indicate the correct 

root locus diagram 

a) 

b) 

c) 

d) 

[GATE -2005] 

Q.6 A unity feedback control system has 
an open-loop transfer function 

( ) ( )2

KG s = .
s s +7s+12

 The gain K for 

which 1 1= − +s j will lie on the root 
locus of this system is  
a)4 b)5.5 
c)6.5 d)10 

[GATE-2007] 

Q.7 The feedback configuration and the 
pole–zero locations of 

GATE QUESTIONS(EC)(Root Locus) 
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( )
2

2

s -2s+2G s =
s +2s+2

are shown below. 

The root locus for Negative values of 
K, i.e. for K 0,−∞ < <  has 
breakaway/break-in points and 
angle of departure at pole P (with 
respect to the positive real axis) 
equal to  

a) 2and0± ° b) 2and45± °
c) 3and0± ° d) 3and45± °

            [GATE-2009] 

Q.8 The root locus plot for a system is 
given below. The open loop transfer 
function corresponding to this plot 
is given by  

a) ( ) ( ) ( )
s(s 1)G s H s K

s 2 (s 3)
+

=
+ +

b) ( ) ( ) ( ) 2

(s 1)G s H s K
s s 2 (s 3)

+
=

+ +

c) ( ) ( ) ( )
1G s H s K

s s 1 (s 2)(s 3)
=

− + +

d) ( ) ( ) (s 1)G s H s K
s(s 2)(s 3)

+
=

+ +
          [GATE-2011] 

Q.9 In the root locus plot shown in the 
figure, the pole/zero marks and the 
arrows have been removed. Which 
one of the following transfer 
functions has this root locus?  

a)
( )( )( )

s 1
s 2 s 4 s 7

+
+ + +

b) 
( )( )( )

s 4
s 1 s 2 s 7

+
+ + +

c) 
( )( )( )

s 7
s 1 s 2 s 4

+
+ + +

d) ( )( )
( )( )
s 1 s 2
s 7 s 4
+ +
+ +

[GATE-2014] 

Q.10 The open-loop transfer function of a 
unity-feedback control system is 

( ) 2

K
s s 5

G s
5+ +

=

The value of K at the breakaway 
point of the feedback control 
system's root-locus plot is  

[GATE-2016] 

Q.11 The forward-path transfer function 
and the feedback-path transfer 
function of a single loop negative 
feedback control system are given 

as ( ) 2

K(s 2)
s 2

G
s

s
2
+

+ +
= and H(s)=1, 

respectively, If the variable 
parameter K is real positive, then 
the location of the breakaway point 
on the root locus diagram of the 
system is ___. 

 [GATE-2016] 
Q.12 A linear time invariant system with 

the transfer function 

G(s)=
𝐾𝐾(𝑠𝑠2+2𝑠𝑠+2)
(𝑠𝑠2−3𝑠𝑠+2)

Is connected in unity feedback 
configuration as shown in the figure. 
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For the closed loop system shown, 
the root locus for 0<K<∞ intersects 
the imaginary axis for K=1.5. The 
closed loop system is stable for  
a) K>1.5
b) 1<K<1.5
c) 0<K<1.5
d) No positive value of K

ANSWER  KEY: 

1 2 3 4 5 6 7 8 9 10 11 
(d) (b) (d) (c) (c) (d) (b) (b) (b) 1.25 -3.414 
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Q.1 (d) 
For over damping roots of 
characteristic equation should lie on 
negative axis and be unequal.   

Q.2 (b) 

RL lies where no. of poles and zeros 
to the right of the pole is odd. 

1.5s∴ = − doesn’t lie on RL 

Q.3 (d) 
( ) ( )1 G s H s 0+ =

( )
K1 0

s s 2 (s 3)
⇒ + =

+ +
 

2

K1 0
s(s 5s 6)

⇒ + =
+ +

( )3 2K 1. s 5s 6s⇒ = − + +

( )2dK 3s 10s 6s
ds

⇒ = − + +

dK 0
ds

=

23 10 6 0s s⇒ + + =
10 100 72

6
s − ± −
=

10 5.3 0.784, 2.55
6

− ±
= = − −  

2 3 5Centroid 1.66
3 3

− − −
= = = −

−
 

Angle of asymptotes 

π(2K 1)
P Z

= +
−

π(2K 1)
3

= +
π 5π,π,
3 3

∴ Break away point is (-0.784,0)as -
2.55 does not lie on RL. 

Q.4 (c) 
P Z

Centroid
P Z

Σ Σ−=
−

1 3 1.33
3

− −
= = −  

Q.5 (c) 
( ) ( )1 G s H s 0+ =
2s 3sK
1 s
+

=
−

For breakaway & break in point 

( ) ( ) 2dK 1 s 2s 3 s 3s 0
ds

= − + + + =

2s 2s 3 0= − + + =
2s 2s 3 0⇒ − − =
( ) ( )s 3 s 1 0⇒ − + =

s 3, 1= −  
-1is the breakaway point and 3 is 
the break in point. 

Q.6 (d) 
G(s)T.F.

1 G(s)
=

+
As ( )H s 1=
For the point s 1 j1= − +  to lie on 
root locus  

( )1 G s 0+ =

2

K1 0
s(s 7s 12)

⇒ + =
+ +

 

EXPLANATIONS 
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( )2s 7s 12 K 0+ + + =

Putting   
( )s 1 j 1 j (1 2j 1 7 7 j 12) K 0= − + − + − − − + + + =

K 10⇒ = +

Q.7 (b) 

( ) ( )1 G s H s 0+ =
2

2

K(s 2s 2)1 0
s 2s 2

− +
+ =

+ +
2

2

s 2s 2K
s 2s 2
+ +

= −
− +

Put K 0 we have
s

∂
=

∂
( )2(s 2s 2) s 1− + +

( ) ( )2s 2s 2 s 1 0− + + − =
2 22s 4s 4 0− + =  
22s 4= +

s 2= ±  
Angle of departure is 

DΦ 180° Φ= +

Where z pΦ Φ Φ= −∑ ∑
Φ 135°=  

DΦ 180 135° 45°= − =
So (b) options is correct. 

Q.8 (b) 
From plot we can observe that one 
pole terminates at one zero at 
position -1 and three poles 
terminates to ∞. It means there is 
four poles and 1 zero .Pole at -3 goes 
on both sides. It means there are 
two poles at -3.  

Q.9 (b) 
For transfer function  

( )
( )( )( )

s 4
s 1 s 2 s 3

+
+ + +

From pole zero plot 

Q.10 (1.25) 
In this first we need to find the 
break point by finding the root of 
dk
ds

0=  and then by using magnitude 

condition value of k can be obtained. 

( ) 2

K
s s 5

G s
5+ +

=

2 s 5)(sK 5+ += −
dk
ds

0=

2s  5  0  s  2.5⇒ + = ⇒ = −
Applying magnitude conditi (on ) 1G s→ =

2
s 2.5

K 1
s 5s 5 =−+

=
+

 

( )2

k =
( 2.5) 5x

1
2.5 5

 
 
− + − +    

⇒  

k 1
6.25 12.5 5
 ⇒ = − + 

 

k 1 k 1.25
1.25

⇒ = ⇒ =
−

Q.11 (-3.414) 
To find break point, from 
characteristic equation we need to 
arrange k as function of s, then the 

root of dk 0
ds

=  gives break point. 

 2s 2s 2 k 2k 0+ + + + =  
( ) 2k s 22 2-s s⇒ += ++

2s 2s 2
s

k
2

 + +
 +

⇒ −


=
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( ) ( ) ( )2 2

2

d ds 2 s 2s 2 s 2s 2 (s 2)dk ds ds
ds (s 2)

 + + + − + + + 
⇒ = −  + 

   
( )( ) ( )2

2

s 2 2s 2 s 2s 2dk
ds (s 2)

 + + − + +
 ⇒ = −

+  
dk 0
ds

⇒ =

2 22s 2s 4s 4 s 2s 2 0⇒ + + + − − − =
2s 4s 2 0⇒ + + =

s 0.58 and 3.414⇒ = − −

• To find the valid break point we
need to find that lies on root
locus

• -3.414 lies on root locus
• So break point -3.414.
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Q.1 The roots of the closed loop 
characteristic equation of the 
system  are  

a) -1 and -15 b) 6 and 10
c) -4 and -15 d) -6 and -10

           [GATE-2003] 

Q.2 The loop gain GH of a closed loop 
system is given by the following 

expression
( )

K
s s 2 (s 4)+ +

. The value 

of K for which the system just 
becomes unstable is 
a) K=6 b) K=8
c) K=48 d) K=96

           [GATE-2003] 

Q.3 For the equation, 3 2s 4s s 6 0− + + =
the number of roots in the left half 
of s-plane will be 
a) zero b) one
c) two d) three

[GATE-2004] 

Q.4 A unity feedback system, having an 

open loop gain ( ) ( ) ( )
( )

k 1 s
G s H s

1 s
−

=
+

,

becomes stable when 
a) lkl 1> b) k 1>
c) lkl 1< d) k 1< −

[GATE-2005] 

Q.5 The system shown in the figure is 

a) Stable
b) Unstable
c) Conditionally stable
d) stable for input 1u , but unstable 

for input 2u
 [GATE-2007] 

Q.6 If the loop gain k of a negative 
feedback system having a loop 
transfer function ( )2k(s 3) / s 8+ + is 
to be adjusted to induce a sustained 
oscillation then 
a) The frequency of this oscillation

must be 4 / 3  rad/s
b) The frequency of this oscillation

must be 4 rad/s
c) The frequency of this oscillation

must be 4 or 4 / 3  rad/s
d) Such a k does not exist

[GATE-2007] 

Q.7 Figures shows a feedback system 
where  k 0>  

The range of k for which is stable 
will be given by 
a) 0 < k < 30 b) 0 < k < 39
c) 0 < k < 390 d) k > 390

[GATE-2008] 

Q.8 The first two rows of Routh’s 
tabulation of a third order equation 
are as follows. 

3S  2 2 
2S 4 4 

This means there are 

GATE QUESTIONS(EE)(Stability Analysis) 
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a) two roots at s = ±j  and one root
in right half s-plane

b) two roots at s = ±j2 and one root
in left half s-plane

c) two roots at s = ±j2 and one root
in right half s-plane

d) two roots at s = ±j  and one root
in left half s-plane

[GATE-2009] 

Q.9 An open loop system represented by 
the transfer function 

( ) ( )
(s-1)G s =

s+2 (s+3)
 is 

a) stable and of the minimum phase
type

b) stable and of the non-minimum
phase type

c) unstable and of the minimum
phase type

d) unstable and of the non-
minimum phase

[GATE-2011] 

Q.10 The feedback system shown below 
oscillates at 2rad/s when 

a)K=2 and a=0.75  b)K=3 and a=0.75 
c)K=4 and a=0.5    d)K=2 and a=0.5 

[GATE -2012] 

Q.11 A single-input single-output feedback 
system has forward transfer 
function G(s) and feedback transfer 
function H(s) It is given that I 
G(s).H(s)I<1. Which of the following 
is true about the stability of the 
system?  
a) The system is always stable
b) The system is stable if all zeros

of G(s).H(s) are in left half of the
s-plane

c) The system is stable if all poles
of G(s).H(s) are in left half of the
s-plane

d) It is not possible to say whether
or not the system is stable from
the information given

 [GATE-2014] 

Q.12 Given the following polynomial 
equation 3 2s 5.5s 8.5s 3 0+ + + =  , the 
number of roots of the polynomial, 
which have real parts strictly less 
than -1, is  

 [GATE-2016] 

Q.13 The open loop transfer function of a 
unity feedback control system is 

given by ( ) ( )s

K(s 1)G s ,
s 1 T (1 2s)

+
=

+ +
K 0,T 0> > .The closed loop system 
will be stable if  

a) 4(K 1)0 T
K 1

+
< <

−
b) 4(T 2)0 K

T 2
+

< <
−

c) (T 2)0 K
T 1
+

< <
−

d) 8(K 1)0 T
K 1

+
< <

−
[GATE-2016] 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 
(d) (c) (b) (c) (d) (b) (c) (d) (b) (a) (a) 2 (c) 

ANSWER  KEY: 
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Q.1 (d) 
1 GH 0+ =  (Characteristic equation) 

( )
451 0

s 15 (s 1)
+ =

+ +
2s 16s 60 0+ + =  

∴ ( ) ( )s 10 s 6 0+ + =
∴ roots are (-6, -10). 

Q.2 (c) 
Characteristic equation 

1 GH 0= + =  
K1 0

s(s 2)(s 4)
⇒ + =

+ +
Characteristic eq. 
⇒ 3 2s 6s 8s k 0+ + + =
The Routh-array is formed as 
follows 

According to Routh-Hurwitz 
criterion, for a stable system there 
should be no change of sign in the 
first column of Routh array. 

So, 48 K 0 and K 0
6
−

> >

0 K 48< <  
Hence for K=48, the system just 
becomes unstable. 

Q.3 (b) 
2 2s 4s s 6 0− + + =  

The Routh-array is formed as 
follows 

No. of sign changes in first column of 
Routh-array=2. 
According to Routh-Hurwitz 
criterion, the number of changes of 
sign in the first column gives the 
number of positive real part roots of 
the polynomial. 
So, no. of roots in RHS of s-plane=2. 
Total no. of roots=3 
Hence, no. of roots in LHS of s-plane 
=3-2=1 

Q.4 (c) 
Characteristic equation 

( ) ( )1 G s H s 0+ =

⇒
k(1 s)1 0

1 s
−

+ =
+

⇒ ( )s 1 k 1 s 0+ + − =

⇒ ( )s 1 k 1 k 0− + + =
k 1s
k 1
+

=
−

For a stable system pole lies in left 
hand side of s=plane, it means and 
must be negative for stable system.  

s 0<  k 1 0
k 1
+

<
−

 

Case-I 
k 1 0 and k 1 0+ < − >  
k 1 and k 1< − >  
Which is not possible. 
Case-II 
k 1 0 and k 1 0+ > − <  
k 1andk 1> − <  

1 k 1− < <  

EXPLANATIONS 
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k 1<  

Q.5 (d) 

Pole is in LHS of s-plane, hence 
stable. 

( )1

(s 1)
(s 1)(s 2)T / F (s 1) 1 (s 3)1

(s 2) (s 1)

−
−+= =

− ++ ×
+ −

( )2

1
(s 1)T / F 1 (s 1)1

(s 1) (s 2)

−=
−

+ ×
− +

( )
s 2

s 1 (s 3)
+

=
− +

Hence unstable as it has pole at right 
hand side of S-plane. 

Q.6 (b) 
Loop transfer function 

( ) 2

(s 3)G s H(s) k
(s 8)

+
= =

+
∴  characteristic equation 

( ) ( )1 G s H s 0= + =

⇒ 2

(s 3)1 k 0
(s 8)

+
+ =

+
⇒ 2s 16s 64 (s 3) 0+ + + + =
⇒ ( )2s 16 k s 64 3k 0+ + + + =
Routh- Array 

For sustained oscillation 
16+k=0 
⇒ 2k 16s 64 3k= − + +

( )2s 64 3x 16 0= + + − =
2s 16 0+ =  

⇒ s j4= ±
So, frequency of oscillation 4 rad/ 
sec. 

Q.7 (c) 

( ) ( )
kG s

s s 3 (s 10)
=

+ +
 and H(s)=1 

Characteristic equation 
⇒ ( ) ( )1 G s H s 0+ =

( )
k1 0

s s 3 (s 10)
+ =

+ +
 

⇒ ( )( )s s 3 s 10 k 0+ + + =
3 2s 13s 30s k 0+ + + =  

Routh-Array 

According to Routh-Hurwitz criterion. 
For a stable system, signs of first 
column do no change 

k 0>  and 13 30 k 0
13
× −

>

Therefore system to be stable 
0 k 390< <  

Q.8 (d) 
Routh-Array 

The third row vanishes. An auxiliary 
equation is formed using elements 
of 2nd row. 
Auxiliary equation   
( ) 2A s 4s 4 0= + =
s j⇒ = ± .

The derivative of this auxiliary 
equation is taken wrt s and the 
coefficients of the differentiated 
equation are taken as the elements 
of 3rd row. 
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dA(s) 8s
ds

=

Routh-Array 

There is no root in RHS of s-plane. 
Two roots of s j= ± , so one root is in 
LHS of s-plane. 

Q.9 (b) 

( ) ( )
s 1G s

s 2 (s 3)
−

=
+ +

one zero at s=1 
two poles at  s=-2 & -3 
Since zero lies in RHS of s-plane.  
It is non-minimum phase type 
system. 
Since both poles lie in LHS of s-
plane, system is stable. 

Q.10 (a) 
Characteristic equation is 

( ) ( )1 G s H s 0+ =

3 2

k(s 1)1 0
s as 2s 1

+
+ =

+ + +
 

( ) ( )3 2s as 2 k s 1 k+ + + + + = 0
Routh array for this is  

( )

3

2

1

0

s
1 (2 k)

s
a (1 k)

s
a 2 k (1 k)

s
a

(1 k)

+
+

+ − +

+

For oscillation  ( )a 2 k (1 k)
0

a
+ − +

=  

1 ka
2 k
+ ⇒ =  + 

 

Now  
( )2as 1 k 0+ + =

( )2aω 1 k 0− + + =
Given  ω 2rad / sec=  

( )4a 1 k 0− + + =

( )(1 k)4 1 k 0
(2 k)
+

− + + =
+

( ) ( ) ( )4 1 k 2 k 1 k 0− + + + + =

( ) ( )1 k 2 k 4 0 + + − = 
k 1,2= −  
But k 1= − is not possible as system 
will not oscillate for this as  
a 0=  so   k 2=  

1 k 3a 0.75
2 k 4
+

= = =
+

Q.11 (a) 

Q.12 (2) 
 The polynomial is

3 2S 5.5S 8.5S 3 0+ + + = , since we are 
interested to see the roots wrt S. -1 
so in the above equation replace S 
by z-1 then the equation is  

3 2( 1) 5.5( 1) 8.5( 1) 3 0Z Z Z− + − + − + =
3 2Z 3Z 3Z 1 5.5⇒ − + − +

2(Z 1 2Z) 8.5Z 8.5 3 0+ − + − + =  
3 22.5 0.52 1 0Z Z⇒ + + − =
3 2 ( 3 5.5)⇒ + − +Z Z

(3 8.5 11) ( 1 5.5 8.5 3) 0+ + − + − + − + =Z
Using RH table  

The single sign change in 1st column 
indicate that out of 3 roots 1 root lie 
on the right half of S=-1 plane if 
memory remaining 2 lies on left half 
of S =-1 plane.  

Q.13 (c) 
To comment closed 100b system 
stability we need the characteristic 
equation. Here it is given that it is a 
unity feedback system.  
Unity feedback system 
 So the characteristic equation is 
S(1 TS)(1 2s) K(S 1) 0+ + + + =  

2(S TS )(1 2S) KS K 0⇒ + + + + =
2 2 3S 2S TS 2T S + KS + K 0⇒ + + + =
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3 2S (2T) S (2 T) S(1 k) k 0⇒ + + + + + =

3 22 T k 1 kS S S 0
2T 2T 2T
+ +   ⇒ + + =   

   
 → for stability using criterion R(t) 

2 T K 1 K
2T 2T 2T
+ +   >  

  
K 1 1(T 2)(K 1) K

K T 2
+

⇒ + + > ⇒ >
+

1 1 1 T 1 T 21 K
K T 2 K T 2 T 1

+ +   ⇒ > − ⇒ > − ⇒ < −   + + +   
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Q.1 A unity feedback system has an 
open loop transfer function,

( ) 2

KG s
s

= . Its root locus plot will be

a) 

b) 

c) 

d) 

[GATE-2002] 

Q.2 Figure shows the root locus plot 
(location of poles not given) of a 
third order system whose open loop 
transfer function is 

a) 3

K
s

b) 
( )2

K
s s 1+

c) 2

K
s(s 1)+

d) 
( )2

K
s s 1−

[GATE-2005] 

Q.3 A closed-loop system has the 
characteristic function 
( )( ) ( )2S 4 s 1 K s 1 0− + + − = .
Its root locus plot against K is 
a) 

b) 

c) 

d) 

[GATE-2006] 

Q.4 The characteristic equation of a 
closed-loop system is 
( )( )s s 1 s 3 k+ + +  ( )s + 2  = 0, k > 0 . 

GATE QUESTIONS(EE)(Root Locus) 
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Which of the following statements is 
true? 
a) Its roots are always real
b) It cannot have a breakaway

point in the range [ ]-1 < Re s  < 0
c) Two of its roots tend to infinity

along the asymptotes [ ]Re s  = -1
d) It may have complex roots in the

right half plane
[GATE-2010] 

Q.5 The open loop transfer function G(s) 
of a unity feedback control system is 

given as, ( ) ( )2

2k s+
3G s =

s s+2

 
 
 

From the root locus, it can be 
inferred that when k tends to 
positive infinity 
a) three roots with nearly equal

real parts exist on the left half of
the s-plane

b) one real root is found on the
right half of the s-plane

c) the root loci cross the jω axis for
a finite value of k:k≠0

d) three real roots are found on the
right half of the s-plane

           [GATE-2011] 

Q.6 The open loop poles of a third order 
unity feedback system are at 0,-1, -2. 
Let the frequency corresponding to 
the point where the root locus of the 
system transits to unstable region 
be K. Now suppose we introduce a 
zero in the open loop transfer 
function at -3, while keeping all the 
earlier open loop poles intact. Which 
one of the following is TRUE about 
the point where the root locus of the 
modified system transits to unstable 
region? 

a) It corresponds to a frequency
greater than K

b) It corresponds to a frequency
less than K

c) It corresponds to a frequency K
d) Root locus of modified system

never transits to unstable region
 [GATE-2015] 

Q.7 An open loop transfer function G(s) 

of system is ( ) ( )
k

s s )
s

2
G

1 (s+ +
= . 

For a unity feedback system, the 
breakaway point of the root loci on 
the real axis occurs at, 
a)-0.42 
b) -1.58
c) -0.42 and -1.58
d) none of the above.

[GATE-2015] 

Q.8 The gain at the breakaway point of 
the root locus of a unity feedback 
system with open loop transfer 

function 
( )

KsG(s)
s 1 (s 4)− −

 is  

a) 1 b) 2
c) 5 d) 9

[GATE-2016] 
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1 2 3 4 5 6 7 8 
(b) (a) (b) (c) (a) (d) (a) (a) 

ANSWER  KEY: 
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Q.1 (b) 

( ) 2

KG s H(s)
s

=

∴ P Z 2− =  

Centroid 0
2

= = 0 

Angle of asymptotes ° °90 ,270=
∴ Option (b) is correct. 

Q.2 (a) 

These are three asymptotes with 
angle ° ° °60 ,180 and 300  
Angle of asymptotes 
( )2k 1 180

P Z
+ ×

=
−

o

Where k=0, 1, 2 upto (P-Z) -1 as 
angles are ° ° °60 ,180 and 300  it means 
P – Z = 3 
Intersection of asymptotes on real 
axis 

Σpoles ΣzeroX
P Z
−

=
−

Since, system does not have zeros 
ΣpolesX

P
=

As asymptotes intersect at origin, it 
means all the three poles are at 
origin. 
Hence, option (a) is correct. 

Q.3 (b) 
Characteristic function 

⇒ ( )( ) ( )2S 4 s 1 K s 1 0− + + − =

⇒
( )

( ) ( )2

K s 1
1 1 G(s)H(s)

S 4 s 1
−

+ ≡ +
− +

Open loop transfer function 
( )

( ) ( )2

K s 1
G(s)H(s)

S 4 s 1
−

= =
− +

 Zero of OLTF s=1; z=1 
Poles of OLTF s=-1, -2, +2, P=3 
The root locus starts from open-loop 
poles and terminates either on 
open-loop zero or infinity. 
Root locus exist on a section of real 
axis it the sum of the open-loop 
poles and zeros to the right of the 
section is odd. 
Number of branches terminating on 
infinity.= P-Z=3-1=2 
Angles of asymptotes 
( )2k 1 180

P Z
+ ×

=
−

o ( )2k 1 180
2

+ ×
=

o

90 and270= o o  
Intersection of asymptotes on real 
axis (centroid) 

( )1 2 2 (1)Σpoles Σzero 1
P Z 2

− − + −−
= = = −

−
Option (d) is correct on the basic of 
above analysis. 

Q.4 (c) 
Characteristic equation 
( ) ( ) ( )s s 1 s 3 k s 2 0+ + + + =

( )
( ) ( )

k s 2
1 0

s s 1 s 3
+

+ =
+ +

 

Comparing with 1+G(s)H(s)=0 
G(s)H(s) = Open-loop transfer 
function (OLTF) 

( )
( ) ( )

k s 2
s s 1 s 2

+
=

+ +
no. of zero=Z=1 zero at -2 

EXPLANATIONS 
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no. of poles=P=3       poles at 0,-1 &-3 
No. of branches terminating at 
infinity 
=P-Z=3-1=2 
Angle of asymptotes 
( )2k 1 180

P Z
+ ×

=
−

o

( )2k 1 180
2

+ ×
=

o

( )2k 1 90= + × o

90 and270= o o  

Centroid Σpoles Σzero
P Z
−

=
−

( )0 1 3 2
1

2
− − − −

= = −  

Breakaway point lies in the range -1 
< Re[s] < 0 and two branches 
terminates at infinity along the 
asymptotes Re(s) = -1. 

Q.5 (a) 

( ) ( )2

2k s
3G s

s s 2

 + 
 =

+
 and H(s) =1 

Characteristic equation

1+G(s)H(s)=0 ⇒ ( )2

2k s
31 0

s s 2

 + 
 + =

+
 

⇒ 3 2 2s 2s k s 0
3

 + + + = 
 

⇒ 3 2 2ks 2s ks 0
3

+ + + =

Routh Array  
As k > 0, there is no sign change in 
the 1st column of routh array. So the 
system is stable and all the three 
roots lie on LHS of s-plane. 
For ( )k 0 k 0> ≠ , none of the row of
routh array becomes zero. So root 
loci does not cross the jω  axis. 
no. of zero=Z=1 
no. of poles=P=3 
No. of branches terminating at 
infinity 
=P-Z=3-1=2 

Angle of asymptotes 
( )2k 1 180

P Z
+ ×

=
−

o

( )2k 1 180
2

+ ×
=

o

( )2k 1 90= + × o

90 and270= o o  

Centroid Σpoles Σzero
P Z
−

=
−

20 0 2
23

2 3

 + − − − 
 = = −

Since, all the three branches 

terminates at ( ) 2Re s
3

= − .

So all the three roots have nearly 
equal real part. 

Q.8 (a) 
KsG(s)

(s 1)(s 4)− −
 To find Break away point 

We need to find the root of dk 0
ds

=

where 
2(s 1)(s 4) s 5s 4K

s s
 − − − +

= − =  
 

2 2

2

d ds (s 5s 4) (s 5s 4) (s)dk ds ds
ds s

− + − − +
=

2S(2S 5)(s 5s 4) 0⇒ − − + =
2 22S 5S S 5S 4 0⇒ − − + − =
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2S 4 0 S 2⇒ − = ⇒ = ±
From the pole zero plot it is clean 
that Break away point must be as it 
is in between 2 poles  
Now to find gain at this point use 
magnitude condition 

s 2

KS KS1 1 K 1
(s 1)(s 4) (1)( 2)=

⇒ = ⇒ = ⇒ =
− − −
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Q.1  The range of the controller gains 
( )p iK ,K  that makes the closed loop
control system (shown in the 
following figure) stable is given as 

a) i
i p

KK 0 and K 20
12

< < −

b) i
i p

KK 0 and K 20
12

< > −

c) i pK 0 and K 0< >

d) i
i p

KK 0 and K 20
12

< > −

           [GATE-2006] 

Q.2 A closed loop control system is 
shown below. The range of the 
controller gain Kc  which will make 
the real parts of all the closed loop 
poles more negative than -1 is  

a) cK >-4  b) cK >0
c) cK >2 d) cK <2

           [GATE-2008] 

Q.3 The open loop transfer function of a 
unity gain feedback system is given 

by : 
( )

k(s 3)G(s)
s 1 (s 2)

+
+ +

. The range of 

positive values of k for which the 
closed loop system will remain 
stable is: 

a) 1 k 3< < b) 0 k 10< <
c) 5 k< < ∞ d) 0 k< < ∞

           [GATE-2010] 

Q.4 The first two rows of Routh’s table 
of a third-order characteristic 
equation are  

3s 3 3 
2s  3 4 

It can be inferred that the system 
has  
a) one real pole in the right- half of

s-plane
b) a pair of complex conjugate

poles in the right-half of s-plane
c) a pair of real poles symmetrically

placed around s=0
d) a pair of complex  conjugate

poles on the imaginary axis of
the s-plane

[GATE-2011] 

Q.5 The value of a0 which will ensure 
that the polynomial s3+2s+a0 has 
roots on the left half of the s-plane is 
a) 11 b) 9
c) 7 d) 5

[GATE-2016] 

Q.6 For the feedback system given 
below, the transfer function 

( )
( )2

1 .
s

G s
1+

= The  system

CANNOT be stabilized with 

a) ( )C s 31
s

= + b) ( )C s 73
s

= +

GATE QUESTIONS(IN)(Stability Analysis) 
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c) ( )C s 93
s

= + d) ( )C s 1
s

=

 [GATE-2016] 

Q.7 Consider a standard negative 
feedback configuration with 

1( )
( 1)( 2)

G s
s s

=
+ +

and ( ) sH s
s
α+

=

. For the closed loop system to have 
a poles on the imaginary axis, the 
value of α  should be equal to (up to 
one decimal place) ________________. 

[GATE-2018] 
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Q.1  (d) 
Characteristic equation is 
( ) ( ) ( )p is s 2 s 10 k S k 0+ + + + =
3 2

p is 12s 20s k S k 0+ + + + =  

( )

p3

i2

1 p i

i

1       20 k
s 12            k
s

240 12k ks
121
k

+

+ −

i p iK 0and240 12k k 0∴ > + − >

i
p

KK 20
12

⇒ > −

Q.2  (c) 
( ) cs s 3 K 0+ + =

2
cGs 3s K 0+ + =  

c
1,2 c

3 9 4K 9S 1.5 K
2 4

− ± −
= = − ± −

c c
9 91.5 K 1or K 0.5
4 4

− + − < − − <

c c
9 K 0.25,K 2
4
− < >    OR 

Put S=Z-1 and apply RH criterion for 
the polynomial in z 

Q.3  (d) 
( ) ( )1 G s H s 0+ =

( ) ( ) ( )s 1 s 2 k s 3 0⇒ + + + + =

System is stable, for all positive K. 
 (from Routh Hurwitz criterion) 
(or) 0 < K< ∞ 

Q.4   (d) 

3

2

3       3s
4       4s

     0    ( 0)s
         41

∈>

3 2C.E is 3S 4S 3S 4∴ + + +  
( ) ( )20 3S 4 S 1 0= ⇒ + + =

4S J
3,

= − ±

Q.5 (d) 

For Stability  0
0

6 a 0 a 6
3
−

> ⇒ <  

Q.6 (c) 
The characteristic equation of 
system is 1+G(s) = 0 

2

C(S)1 0
S 2S 1

⇒ + =
+ +

 
2S 2S 1 C(S) 0⇒ + + + =

if we take C(S)= 3 9
5

+ then  

 

1 2 3     4     5     6 7 
(d) (c) (d)   (d)    (d)    (c) 9 

ANSWER  KEY: 

EXPLANATIONS 
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3

2

1

0

1           4S
2 9S

1/ 2S
9S

−

2 9S 2S 1 3 0
S

+ + + + =  
3 2S 2S 4S 9 0⇒ + + + =

So system is unstable, remaining     
options gives stable.  

Q.7 9 

3 2

3 2

1( )
( 1)( 2)

( )

. 1 ( ) ( ) 0;
( 1)( 2) ( ) 0

3 2 0
3 3 0

arg
3 3

9

G s
s s
sH s

s
C E G s H s
s s s s
s s s s
s s s
If systemis m inal stable

α

α

α

α

α
α

=
+ +
+

=

= + =
+ + + + =

+ + + + =

+ + + =

× =
=
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Q.1  The roots locus of a plant is given in 
the following figure. The rot locus 
crosses imaginary at 4 2rad / sω =  
with gain K= 384. It is observed that 
the point s 1.5 j 1.5= − + lies in the 
root locus. The gain K at 
s 1.5 j1.5= − + is computed as  

a) 11.3 b) 21.2
c) 41.25 d) 61.2

[GATE-2006] 

Statement for linked Answer 
Questions Q.2 & Q.3: 
A transfer function with unity DC 
gain has three poles at -1, -2 and -3 
and no finite zeros. A plant with this 
transfer function is connected with 
this transfer function is connected 
with a proportional controller of 
gain K in the forward path, in a unity 
feedback configuration.  

Q.2  The transfer function is 

a) 
( )( )

S
s 1 s 2 (s 3)− − −

b) 
( )( )

6
s 1 s 2 (s 3)+ + +

c) 
( )( )( )

S
s 1 s 2 s 3+ + +

d) 
( )( )( )

6
s 1 s 2 s 3− − −

           [GATE-2007] 

Q.3  If the root locus plot of the closed 
loop system passes through the 
points j 11± , the maximum value of 
K for stability of the unity feedback 
closed loop system is  
a) 11 b) 6
c) 10 d) 6 11

[GATE-2007] 

Q.4 The open loop transfer function of a 
unity feedback system is 

( ) ( )
k(s+2)G s =

s+1+j1 (s+1-j1)
The root locus plot of the system has 
a) Two breakaway points located at

s = -0.59 and s = -3.41  
b) One breakaway point located at

s = -0.59
c) One breakaway point located at

s = -3.41  
d) One breakaway point located at

s = -1.41  
           [GATE-2008] 

Q.5 Consider the second- order system 
with the characteristic equation 
s(s+3)+K(s+5)=0 Based on the 
properties of the root loci, it can be 
shown that the complex portion of the 
root loci of the given system for 0<k 
<∞  is described by a circle, and the 
two breakaway points on the real 
axis are . 

a) 55
2

− ± b) 5 5− ±

c) 5 10− ± d) 5 2 5− ±
          [GATE-2011] 

Q.6 The open loop transfer function of a 
unity gain negative feedback control 
system is given by 

GATE QUESTIONS(IN)(Root Locus) 
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( ) ( )
2s +4s+8G s =

s s+2 (s+8)
.The angle θ, at 

which the root locus approaches the 
zeros of the system satisfies 

a) -1 1θ =π-tan
4

 
 
     

b) -13π 1θ = -tan
4 3

 
 
   

c) -1π 1θ = -tan
2 4

 
 
 

d) -1π 1θ = -tan
4 3

 
 
   

           [GATE-2012] 

Q.7 The Bode plot of transfer function 
G(s) is shown in the figure below. 

The gain (20log |G(s))| is dB and -8 
at 1 rad/s and 10rad/s respectively. 
The phase is negative for all ω then 
G(s) is  

a) 39.8
s

b) 2

39.8
s

c) 32
s

d) 2

32
s

        [GATE-2013] 

 
 

 
 

Q.8 A loop transfer function is given by: 

( ) ( ) 2

K(S 2G S )
S (S 10

H S
)

+
=

+
The point of intersection of the 
asymptotes of G(s)H(s)on the real 
axis in  the s-plane is at __________. 

 [GATE-2014] 

Q.9 The open loop transfer function of a 

system ( )
2

2

s 6s 1G s 0
s 2s 2
+ +
+ +

= . The angle 

of arrival of its root loci are 

a) π±
4

b) π±
3

c) π±
2

d) 5
6
π

±

[GATE-2015] 

 

1 2 3 4 5 6 7        8      9 
(c) (b) (c) (c) (c) (d) (b)       -4     (a) 

ANSWER  KEY: 
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Q.1  (c) 

( ) ( )
KG s

s s 4 (s 8)
=

+ +

( ) ( ) ( )1 G s 0,G s G s+ = = −
K1, 1

s s 4 | s 8 |
= =

+ +
 

At s 1.5 j1.5 1.5 1.5( 1 j1)= − + = = − +

s 1.5 2, s 4= +
2 22.5 1.5 8.5,= + =

2 2s 8 6.5 1.5 44.5+ = + =

K 1.5 2 8.5 44.5 41.25∴ − =  
Note that the data given at the 
intersecting point with imaginary 
axis is not necessary 

Q.2 (b) 
With unity DC gain, poles at s=1,-2 
and -3and no finite zeros 

Plant 
( ) ( )

6T.F
s 1 s 2 (s 3)

=
+ + +

Q.3 (c) 
( ) ( )At s J 11, G s .H s= ±

( ) ( )1where G s .H s=

( )
6k

s 1 (s 2(s 3)
=

+ + +
6k 1 k 10

2.3.5.2
∴ = ⇒ =

Q.4  (c)

( ) ( )
( )2

2

s 2s 2k(s 2)s k
(s 2)s 2s 2

− + ++
= ⇒ =

++ +

( ) ( ) ( )
( )

2

2

s 2s 2 .1 s 2 .2 s 1dk 0
ds s 2

+ + − + +
= ⇒

+
20 s 4s 2 0= ⇒ + + =  

S 2 2 0.59 / 3.41= − ± = − −  
RL exists at 3.41−  

Q.5 (c) 
s(s 3)K
(s 5)
− +

=
+

( ) ( ) ( )( )
( )

2

2

s 5 . 2s 3 s 35 .1Dk 0
ds S 5

− + + − +
= ⇒

+
20 s 10s 15 0= ⇒ + + =  

10 100 60s 5 10
2

− ± −
= = − ±

Q.7  (b) 

ω 1 to ω 10= =  
Is 1 dec are change & change is (G) 
is 40 dB 

S lope is 40dB / dec∴  
There are 2poles is orign∴  

So, ( ) 2

KG s
S

=

( )atω 1G 32dB given
=
=

2
ω 1

k2log 32dB
ω =

⇒ =  

20log k 32dB k 39.8⇒ = ⇒ =

2

39.8G
S

∴ =

Q.8 (4) 

EXPLANATIONS 
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The point of intersection of the 
asymptotes is nothing but a 
centroid. 
Centroid. 

 real part of poles real part of zeros
( )

σ
P Z
−

=
−

∑ ∑

Given , ( ) ( ) 2

K(s 2G s )
s (s 10

H s
)

+
=

+
P=3; Z=1⇒ (P − Z) = 2 

[ ]10 0 0 [ 2] 8 4
2 2

σ
− + + − − −

= = = −

Q.9  (a) 
Angle of arrival is calculated on a 
complex zero and it is given by, 

a 180 GHφ = −   (at a +ve imaginary 
zero ) 

( ) ( )
( )
s 3 i (s 3 i)
s 1 i (s 1 )

s
i

G
+ + + −
+ + + −

=

( ) [ ][ ]
[ ][ ]

3 i 3 i 3 i 3 i
3 i 1 i 3 i

G 3
1 i

i
− + + + − + + −
−

−
− + + − + +

+
−

=

[ ]
[ ][ ]

2i
2 2i 2

=
− + −

( )G 3 i− +

[ ]1 290 180 tan 180
2

− = ° − °− − °  
90 180 45 180 135= °− °+ °− ° = °  

a 180 135 45 4
πφ = °− ° = ° =  

Other angle will be same with 
opposite sign 4

π±
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4.1 FREQUENCY RESPONSE 

It is a measure of magnitude and phase of 
the output as a function of frequency, in 
comparison to the input. In simplest terms, 
if a sine wave is injected into a system at a 
given frequency, a linear system will 
respond at that same frequency with a 
certain magnitude and a certain phase 
angle relative to the input. 

4.1.1 ADVANTAGE OF FREQUENCY 
RESPONSE 

1) The design and parameter adjustment
of the open-loop transfer function of a
system for specified closed-loop
performance is carried out somewhat
more easily in frequency domain than
in time domain.

2) Further the effects of noise disturbance
and parameter variations are relatively
easy to visualize and assess through
frequency response. If necessary the
transient response of a system can be
obtained from its frequency response
through the Fourier integral. An
interesting and revealing comparison of
frequency and time domain approaches
is based on the relative stability studies
of feedback systems.

3) The Routh criterion is a time domain
approach which establishes with
relative stability of a system, but its
adoption to determine the relative
stability is involved and requires
repeated application of the criterion.
The root locus method is a very
powerful time domain approach as it
reveals not only stability but also the
actual time response of the system. On
the other hand, the Nyquist criterion is
a powerful frequency domain method of

extracting the information regarding 
stability as well as relative stability of a  

system without the need to evaluate roots 
of the characteristic equation. 

4.1.2 RELATION WITH TRANSFER 
FUNCTION 

Consider the transfer of a system as: 
( )
( )

C s
T(s)

R s
=

The frequency response function can be 
obtained simply by replacing s by 𝑗𝑗𝑗𝑗 

Then ( )
( )

C j
T( j )

R j
ω

ω =
ω

e.g. if ( ) 1T s
1 s

=
+

then ( ) 1T j
1 j

ω =
+ ω

From this frequency response function we 
can calculate 

1) Magnitude: The magnitude of the
frequency response function is also
called as the gain of system.

e.g. if ( ) 1T j
1 j

ω =
+ ω

then 

( )
2 2

1T j
1

ω =
+ω

2) Phase: The phase angle of the frequency
response function is nothing but the
phase shift provided by the system to
the input.

e.g. if ( ) 1T j
1 j

ω =
+ ω

 then 

( ) ( )1

1

0T j tan
tan

1

−

−
∠ ω = = − ω

ω 
 
 

4 FREQUENCY DOMAIN ANALYSIS
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4.2 CORRELATION BETWEEN TIME 
AND FREQUENCY RESPONSE 

Consider a second order system with open 
loop transfer function 

( )
2
n

n

G s
s(s 2 )

ω
=

+ ξω

Then ( )
2
n

n

G j
j ( j 2 )

ω
ω =

ω ω+ ξω
Where ξ  is the damping factor nω is the 
undamped natural frequency of 
oscillations. 
Now the closed loop transfer function with 
unity feedback will be
( )
( ) ( )

( ) ( )

2
n

2 2
n n

C j
T j

R j j 2 j
ω ω

= ω =
ω ω + ξω ω +ω

4.2.1 RESONANT PEAK AND RESONANT 
FREQUENCY & BANDWIDTH 

The frequency response magnitude & time 
response of a 2nd order system are as 
shown in the figure. 

In the frequency response a 2nd order 
system shows a peak called resonant peak 
Mr and the corresponding frequency is 
called resonant frequency ωr. For a second-
order feedback control system, the peak 

resonant Mr, the resonant frequency ωr, & 
the bandwidth are all uniquely related to 
the damping ratio ξ & the natural 
undamped frequency ωn of the system. 
The resonant peak is given by 

r 2

1M
2ξ 1 ξ

=
−

The resonant frequency is 
2

r nω ω 1 2ξ= −
Bandwidth is 

2 2 4
nB.W. ω 1 2ξ 2 4ξ 4ξ= − + − +

Note: 

• From the equation r 2

1M
2ξ 1 ξ

=
−

 , Mr 

gets vanished when 
21 2ξ 0− =  

22ξ 1=  
2ξ 1/ 2=  
  ξ 0.707∴ =  

i.e. at rξ 0.707,M 1= =  

• For a second order system, the resonant
peak Mr of its frequency response is
indicative of its damping factor ξ for
0 ξ 1/ 2< ≤  .

• The resonant frequency ωr of the
frequency response is indicative of its
natural frequency for a given ξ and
hence indicative of its speed of

response 
( )s

n

4as t
ξω

 
=  

 
. 

• The frequency at which M has a value of
1/ 2   is of special significance and is
called the cut-off frequency ωc. The
signal frequencies above cut-off are
greatly attenuated in passing through a
system.

Example 
For a unity feedback system 

( ) ( )
KG s

s 1 sτ
=

+
determine the values of 
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K and τ, so that rM 1.06=  and 

nω 12rad / sec= . 
Solution 

( ) ( ) ( )KG s ,H s 1
s 1 sτ

= =
+

( )
( )

( )

( )
2

2

K K
C s s 1 sτ K τ

K 1 KR s τs s K1 s s
s 1 sτ τ τ

+
= = =

+ ++ + +
+

Comparing denominator with 
2 2

n ns 2ξω s ω+ +

2
n

Kω 
τ

∴ =

i.e. n
Kω
τ

= … (1)

and n
12ξω
τ

=

i.e. 1ξ
2 Kτ

=  … (2)

Now, r 2

1M 1.06
2ξ 1 ξ

= =
−

2  ξ 1 ξ 0.4716∴ − =  
i.e.  ( )2 2ξ 1 ξ 0.2225− =

4 2 ξ ξ 0.2225 0∴ − + =
i.e. 2ξ 0.6658,0.3341=  

  ξ 0.8159,0.578∴ =  but ξ  cannot be more 
that 0.707 

   ξ 0.578∴ =  
( )Usingequation 1

n
Kω
τ

=

i.e. K12
τ

=

i.e. K=144 τ 
Using equations (2), 

10.578
2 144τ τ

=
×

i.e. 10.578
2 12 τ

=
× ×

  τ 0.072,K 10.3806∴ = =

4.3 BODE PLOTS 

A Bode plot is a graph of the transfer 
function of a linear, time-invariant system 
versus frequency, plotted with a log-
frequency axis, to show the 
system's frequency response. It is usually a 
combination of a Bode magnitude 
plot, expressing the magnitude of the 
frequency response gain, and a Bode phase 
plot, expressing the frequency 
response phase shift i.e. a Bode plot 
consists of two graphs:  
1) A plot of the magnitude in dB of a

sinusoidal transfer functions against the
frequency in logarithmic scale.

2) A plot of the phase angle against the
frequency in logarithmic scale.

Note: 
The magnitude & the phase angle can be 
calculated as shown in the example 
e.g.  

if ( ) 1T jω
1 jω

=
+

then the magnitude is

( )
2 2

1T jω
1 ω

=
+

& the phase angle is 

( ) ( )1

1

0T jω tan ω
ωtan
1

−

−
∠ = = −

 
 
 

4.3.1 ADVANTAGES OF USING 
LOGARITHMIC SCALE 

• The main advantage of using the
logarithmic plot is that multiplication of
magnitude can be converted into
addition.

• The logarithmic representation is useful
in that it shows both the low-and high
frequency characteristics of the transfer
function in one diagram.

• Expanding the low frequency range by
use of a logarithmic scale for the
frequency is very advantageous since
characteristics at low frequencies are
most important in practical systems.
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Note: 
It is not possible to plot the curves right 
down to zero frequency because of the 
logarithmic frequency ( )log 0 = −∞ ; this
does not create a serious problem. 

4.3.2 BASIC FACTORS OF G (jω) H (jω) 

Consider the open loop transfer function of 
a system as 

' z
1 2

p
1 2

K s (s z )(s z )G(s)H(s)
s (s p )(s p )

+ +
=

+ +
In the above equation either 𝑠𝑠𝑧𝑧or 𝑠𝑠𝑝𝑝 will be 
there at a time. Converting the above 
equation into time constant form we get 

( )( )
( )( )

z
a b

p
1 2

Ks 1 T s 1 T s
G(s)H(s)

s 1 T s 1 T s
+ + …

=
+ + …

Where 
'

1 2

1 2

K z zK
p p

× …
=

× …

1 2 a bT ,T ,T ,T are the time constants of 
different poles & zeros. 
Each term involved in the transfer function 
contributes some magnitude & phase to the 
system. Putting 𝑠𝑠 = 𝑗𝑗𝑗𝑗 in the above 
expression we get the factors in the 
transfer function. 
1) Gain K
2) Poles or zeros at origin ( )± pjω
3) Simple poles & simple zeros 1(1 )±+ jωT
4) Quadratic poles and zeros

12

n n

j1 2 j
±

    ω ω + ξ +    ω ω    

4.3.2.1THE GAIN K 

G(s)H(s) K=

( ) ( )G jω H jω K j0= +

( ) ( )  G jω H jω K∴ = and

( ) ( )G jω H jω 0∠ =

Note:  
As gain K is constant, its magnitude plot 
20 log10 K will be constant. 

4.3.2.2POLES OR ZEROS AT ORIGIN 
( ) ( ) pG jω H jω ( jω)±=

( ) ( ) p  G jω H jω ω±∴ =

In dB p
10 10 1020 log log ω 20 p log ω± = ×±

and ( ) ( ) ( ) pG jω H jω 90 ±∠ =

Note: 
For poles and zeros at origin, the 
magnitude plot will be a straight line with 
slope of p × 20dB± / decade passing 
through 1.ω =  

e.g. If ( ) ( ) 1G jω H jω
jω

= then

( ) ( ) 1G jω H jω
ω

= in dB

10 10
120log 20log ω
ω
= −

which is an equation of straight line 
(y mx c)= +  with a slope of 20dB / decade− . 
Also  ( ) ( ) oG jω H jω 90∠ = −

Therefore the phase plot will be a straight 
line  

Note: 
The slope is sometime written as 
dB/octave 20db / decade 6db / octave− = −  

4.3.2.3SIMPLE POLES AND ZEROS 

( ) ( ) 1G jω H jω (1 jωT)±= +

( ) ( )  G jω H jω∴  ( )( ) 1
21 ωT

±

= +

In dB ( )( ) 1
2

1020 log 1 ωT
±

+

( )2
1020 1log 1 ωT= ×± +

and ( ) ( ) ( ) 11G jω H jω tan ωT
±− ∠ =  
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Note: 
• For simple poles and zeros the

magnitude plot will be a straight line
with slope +20 dB/decade and
−20 dB/decade respectively.

• For low frequencies (ω<<1/T)

( )2
10 1020 log 1 ωT 20log 1 0dB± + ≈ ± =

Therefore for 1ω
T

< the magnitude plot 

will be a straight line coinciding with 0
dB line.

• For high frequencies (ω>>1/T)

( )2
10 1020 log 1 ωT 20log ωTdB± + ≈ ±

Therefore for 1ω
T

> the magnitude plot 

will be a straight line with slope of
±20 dB/decade.

• The magnitude plot of simple pole &
zero has some approximation & the
error due to this approximation is for
zero n 3dB± × ( ve+  & ve−  for pole).
Where n is the order of simple poles or
zeros.

e.g. If ( ) ( ) 1G j H j
1 j T

ω ω =
+ ω

then

( ) ( )
( )2

1G j H j
(1 T

ω ω =
+ ω

In dB 
( )

10 10 2

120log log
(1 T+ ω

2
1020log (1 ( T)) dB= − + ω  

which is a straight line with slope -

20dB/decade & will start from C
1
T

ω =

4.3.2.4QUADRATIC POLES & ZEROS

( ) ( )
12

n n

jG j H j 1 2 j
±

    ω ω ω ω = + ξ +    ω ω    

( ) ( )

1
2 22

n n

 G j H j 1 2

±
       ω ω  ∴ ω ω = − + ξ       ω ω       

1
2 22

10
n n

20 log 1B 2In d

±
       ω ω  = − + ξ       ω ω       

2 22

1020 log 1 2
      
 = ± − +            n n

ω ωξ
ω ω

and ( ) ( )G j H j∠ ω ω
1

n1
2

n

2
tan

1

±

−

  ω ξ ω  =   ω −   ω  
Note: 
• The magnitude plot for quadratic poles

& zeros is a straight line with slope
±40 dB/decade .

• The corner frequency for Quadratic
poles & zeros is c nω = ω . 
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4.3.3 PROCEDURE FOR PLOTTING 
BODE PLOT 

1) Write the transfer function in time
constant form & put s = jω.

2) Then identify the corner frequencies
associated with the basic factors.

3) Draw the asymptotic log-magnitude
curves with proper slopes between the
corner frequencies.

4) Shift the curve up or down by 1020 log K .
( )upforK 1 & down for K 1> <

5) The phase angle curve of G (jω) H (jω)
can be drawn by adding the phase angle
curves of individual factors.

Example 
Sketch the Bode plot for 

( )
20G(s)H(s)

s 1 0.1s
=

+

Solution 
The transfer function is already in the  
time constant form. Identify the factors 
from the transfer function 
1) Gain K 20=

Its mgnitude 1020 log 20 26dB= = + . 
Therefore the magnitude plot will be 
shifted up by 26 𝑑𝑑𝑑𝑑. 

2) 1 pole at origin 1
s

 Its magnitude plot is a 

straight line with slope 20dB / decade−  
passing through point 1ω =  

3) 1 simple pole 1
1 0.1+ s

T=0.1 & the corner 

frequency c
1
T

ω =
1

0.1
= 10rad / sec=

.The magnitude plot is a straight line 
with slope 20dB / decade−  starts from

c 10rad / secω = . 

Note: 
• As plot of pole at origin already has

slope of −20 dB/decade, the slope after 
simple pole will be 

dB dB20 20
decade decade

   − + −   
   

40dB / decade= −  
• After drawing the slopes for simple pole

& pole at origin we will have to shift the 
graph up by 26𝑑𝑑𝑑𝑑. 

1) The total phase angle of the transfer
function is as shown in the table

Plotting the magnitude & phase plot 
against frequency we get 

4.3.4 GAIN CROSSOVER FREQUENCY 

It is the frequency at which the gain of the 
system is unity or 0 dB i.e. at gain crossover 
frequency   

( ) ( )
gc

| G j H j 1
ω=ω

ω ω =  

In 1020 log 1 0dB=  

4.3.5 PHASE CROSSOVER FREQUENCY 

It is the frequency at which the phase of the 
system is −180𝑜𝑜 i.e. at phase crossover 
frequency 
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( ) ( )
pc

oG j H j 180
ω=ω

∠ ω ω = −

4.3.6 GAIN MARGIN 

As we seen earlier in root locus that, if gain 
K of the system is increased, after some 
value of gain the system becomes unstable. 
Gain margin of the system is defined as the 
allowable gain so that the system reaches 
on the verge of instability. Also the gain 
margin of system is defined as the 
reciprocal of the gain of system at phase 
crossover frequency. 

i.e.
( ) ( )

pc

1G.M.
| G j H j

ω=ω

=
ω ω

In dB 

( ) ( )
pc

10
1G.M. 20log

| G j H j
ω=ω

=
ω ω

( ) ( )
pc

10G.M. 20log | G j H j
ω=ω

= − ω ω

Note: For stable systems the gain margin is 
+ve. 

4.3.7 PHASE MARGIN 

Phase margin of a system is an additional 
phase lag that can be introduced in the 
system at gain crossover frequency till it 
reaches on the verge of instability.  

( ) ( )
gc

o
ω ω

P.M. 180 G jω H jω
=

= +∠

Note: 
For stable systems the phase margin 
should be positive. 

4.3.8 CRITERION FOR STABILITY 

Sr
. 
N
o. 

Stability Frequen
cy 
Conditio
n 

G.M. 
Conditi
on 

P.M. 
Conditio
n 

1 Stable 𝜔𝜔𝑝𝑝𝑝𝑝
> 𝜔𝜔𝑔𝑔𝑔𝑔  

Positive Positive 

2 Unstable 𝜔𝜔𝑝𝑝𝑝𝑝
< 𝜔𝜔𝑔𝑔𝑔𝑔  

Negative Negative 

3 Marginally 
Stable 

𝜔𝜔𝑝𝑝𝑝𝑝
= 𝜔𝜔𝑔𝑔𝑔𝑔  

Zero Zero 

Example:  
For a unity feedback system 

( ) 2

242(s 5)G(s)
s s 1 (s 5s 121)

+
=

+ + +
sketch Bode 

plot & determine gc pc,ω ω  Gain margin, 
phase margin. 
Solution:  
First convert the transfer function into 
time constant form 

( )
( )

2

s242 5 1
5G s

s 5s121 s s 1 1
121 121

 × + 
 =
 

× + + + 
 

( )
2

10 1
5

51 1
121 121

 × + 
 =

 
+ + + 

 

s

s ss s

The factors in the transfer function in the 
increasin order of their corner frequencies 
are 
1) Gain K = 10

Its magnitude will be 1020 log 10 20dB= +
Therefore the magnitude plot will be
shifted up by 20 dB.

2) 1 Pole at origin 1
s

It magnitude plot will be a straight line 
with slope −20 dB/decade passing 
through 𝛚𝛚 = 𝟏𝟏. The phase angle 
contributed by this pole will be −90o. 

3) Simple pole ( )1 s+
Its magnitude plot will be a straight line
with slope −40 dB/decade starting
from the corner frequenc

c
1 1 1rad / sec
T 1

ω = = =

Note:  
In −40 dB/decade slope the slope of 

previous pole i.e.1
s

 
 
 

−20 dB/decade is 

also added. 
The phase angle contributed by this pole 

will be 1tan
1

− ω −  
 

. 
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1) Simple zero s1
5

 
 
 
+  

Its magnitude plot will be a straight line
with slope −20 dB/decade starting
from the corner frequenc

c
1 1 5rad / sec1T

5

ω = = = . 

Note:  
For a simple zero the slope is always 
+20 dB/decade but the slope of previous 2 
poles are added hence the resultant slope is 

dB dB20 40 20dB / decade
decade decade

 + + − = − 
 

 

The phase angle contribute by this zero will 

be 1tan
5

− ω −  
 

. 

2) Quadratic poles 
25s s1

121 121
 
 


+


+

The magnitude plot will be a straight 
line with slope −60 dB/decade starting 
from the corner frequency

c 121 11rad / secω = = . 
Note:  
The slope for quadratic poles is 
−40 dB/decade but the slope of previous 3 
factors will also be added hence the 
resultant slope is 

dB dB40 20 60dB / decade
decade decade

 − + − = − 
 

The phase angle contributed by these poles 

will be 1
2

5
121tan

1
121

−

 
 

−  
 − 
 

ω

ω
. 

Example: 
Find the open-loop transfer function of a 
system whose approximate plot is shown 
in Fig.  

-20 db/dec

-12

db 2.5 10 25 log

20 db/dec

Solution: 
1) The starting slope of the graph is

−20 dB/decade hence there is a pole of
order1 at origin.

2) First corner frequency is at 2.5 rad/
sec& at this frequency there is a change
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of +20 dB/decade in slope hence there 
is a zero at 2.5 rad/sec.  

3) Next corner frequency is at 10 rad/sec&
at this frequency there is change
+20 dB/decade in slope hence there is
a zero at 10 rad/sec.

4) Next corner frequency is at 25 rad/sec&
at this frequency there is change
−20 dB/decade in slope hence there is
a pole at 25 rad/sec.

5) Thus the transfer function is

( ) ( )

s sK 1 1
2.5 10G jω H jω

ss 1
25

  + +  
  =

 + 
 

6) To find gain K write the equation for the
straight line at the starting of the graph
y 20logω c= − +
At ω 2.5, y 12dB= = −
∴ 12 20log 2.5 c− = − +
c 4.04dB= −
Now c is the shift in the graph

10c 20log K=
∴ K 0.63=

Example 
Determine the transfer function whose 
approximate plot is shown in Fig. 

-20 db/dec

db

log

40

=1

2.5

-40 db/dec

10
-60 db/dec

40

Solution: 

1) The starting slope is −20 dB/decade
hence there is a pole of order 1 at
origin.

2) First corner frequency is at 2.5 rad/sec
& at this frequency there is a change of
−20 dB/decade in slope hence there is
a simple pole at2.5 rad/sec.

3) Next corner frequency is at 40rad/sec &
there is a slope change of −20 dB/
decade at this frequency hence there is 
another simple pole at 40rad/sec. 

4) Thus the transfer function for the given
Bode plot is

( ) ( ) KG jω H jω
s ss 1 1

2.5 40

=
  + +  
  

5) To find gain K write the equation for the
straight line at the starting of the graph
y 20log c= − ω+
At 2.5, y 40dBω = = +
∴ 40 20log 2.5+ = − + c
c 47.95dB= +
Now c is the shift in the graph

10c 20log K=
∴ K 250=
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5.1 POLAR PLOTS 

In polar plots the magnitude of the 
frequency response is plotted against the 
phase angle for variations in frequency ω 
i.e. ( ) ( )G s H s is plotted against

( ) ( )G s H s∠ .
To sketch the polar plot of G (jω) for the 
entire range of frequency ω, i.e., from 0 to 
infinity, there are four key points that 
usually need to be known:  
1) The start of plot where ω = 0
2) The end of plot where ω = ∞
3) The point where polar plot cuts the –ve

real axis gives the magnitude at phase
crossover frequency
I.e. ( ) ( )

pcω ω
| G jω H jω

=
.

4) The angle with respect to +ve real axis
where the polar plot cuts the unit circle
gives phase angle at gain crossover
frequency i.e. ( ) ( )

gcω ω
G jω H jω

=
∠ . 

Example: 

Draw the polar plot for ( ) ( ) 5G s H s
s

= . 

Solution:  
For the given transfer function, the 
magnitude & the phase angle are: 

( ) ( ) 5G jω H jω
jω

=

∴ ( ) ( ) 5G jω H jω
ω

=

and ( ) ( )
o

1

0G jω H jω
ωtan
0

−

∠ =
 
 
 

( )1 1ωtan tan
0

− − = − = − ∞ 
 

o90= −

Now find the magnitude & phase at 
different values of ω 

Plotting gain & phase on the graph we get 

5.1.1 POLAR PLOTS OF SOME 
STANDARD FUNCTIONS 

1) 
( )

1G(s)H(s)
1 Ts

=
+

2) 
( )( )1 2

1G(s)H(s)
s 1 T s 1 T s

=
+ +

5 POLAR & NYQUIST PLOTS
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3) 
( )( )( )3

1 2 3

1G(s)H(s)
s 1 T s 1 T s 1 T s

=
+ + +

4) 

( )( )( )( )2
1 2 3 4

1G(s)H(s)
s 1 T s 1 T s 1 T s 1 T s

=
+ + + +

Note: 
1) The start of the polar plots (at ω 0= )

depends on the type number of the 
system. 

e.g. Type 0− system will always have its 
polar plot starting from +ve real axis. 

2) The end of the polar plot (at ω = ∞ )
depends on the order of the system.

e.g. Order 1− system will always have its 
polar plot ending at origin in 4th 
quadrant. 

5.1.2 POLAR PLOT FOR 𝐒𝐒𝟏𝟏 

The curve S1 is the whole +ve imaginary 
axis from ω 0= to ω = ∞ . The polar plot of 

1S  will be the polar plot of given transfer 
function. 

e.g. If  
( )( )

KG(s)H(s)
s s 2 s 10

=
+ +

the 

polar plot for 1S  will be the polar plot of 
given transfer function. As given transfer 
function is type 1− and order 3− , its polar 
plot will be 

5.1.3 POLAR PLOT FOR 2S  

The curve 2S  covers the whole RHS s-plane 
from o o90 to 90+ − & its polar will be plotted 
by putting jθ

R
s lim Re

→∞
= where θ  varies from

o o90 to 90+ − . 

e.g.If
( )( )

KG(s)H(s)
s s 2 s 10

=
+ +

put 

jθ

R
s lim Re

→∞
=
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As R →∞ , s>>2 & s>>10 therefore the 
transfer function can be approximated as 

3

KG(s)H(s)
s

=   ; Putting jθ

R
s lim Re

→∞
=

we get ( ) ( )
( )3

jθ

R

KG s H s
lim Re
→∞

=

j3θ
3 j3θ

K 0e
R e

−= =

As θ varies from o o90 to 90+ − , ( ) ( )G s H s
can be written as 
( ) ( )G s H s 0= from o o270 to 270− + .

5.1.4 POLAR PLOT FOR 3S

The curve S3is the whole –ve imaginary 
axis from ω = −∞ to ω 0= . The polar plot 
for S3will be the inverse polar plot of given 
transfer function. 

e.g. If  
( )( )

KG(s)H(s)
s s 2 s 10

=
+ +

the 

polar plot for S3will be the inverse polar 
plot of given transfer function. As given 
transfer function is type 1− and order 3− , 
its inverse polar plot will be 

5.1.5 POLAR PLOT FOR 4S  

The curve S4is around origin from 
o o90 to 90− +  & its polar plot will be plotted 

by putting jθ

R 0
s lim Re

→
=  where θ  varies from

o o90 to 90− + . 

e.g. If 
( )( )

KG(s)H(s)
s s 2 s 10

=
+ +

put jθ

R 0
s lim Re

→
=

As R → 0, s<<2 & s<<10 therefore the 
transfer function can be approximated as 

KG(s)H(s)
20s

=  putting jθ

R 0
s lim Re

→
=

we get 

( ) ( ) ( )
jθ

jθ

R 0

KG s H s e
20 lim Re

−

→

= = ∞
×

as θ varies from o o90 to 90− + , ( ) ( )G s H s
can be written as 
( ) ( )G s H s = ∞  from o o90 to 90+ − .

5.2 PROCEDURE TO FIND G.M. & P.M. 

• The frequency at which polar plot
intersects unity circle is the gain
crossover frequency gcω . 

• The frequency at which polar plot cuts
–ve real axis is the phase crossover
frequency pcω . 
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• The gain margin is reciprocal of the
distance from origin to the point at
which polar plot cuts the –ve real axis.

• Phase margin is the angle made by the
line joining origin & the intersection
point of polar plot with unit circle with
the positive real axis +180o.

5.2.1  STABLE SYSTEM 

• In this figure the intersection of polar
plot with –ve real axis is within unit
circle i.e. x 0<

10
1G.M. 20log
x

= is positive 

• The angle ∅ lies between 0o&−180o

oP.M. 180= +∅ is positive 
• As gain margin & phase margin both are

positive therefore the system is stable. 

5.2.2 UNSTABLE SYSTEM 

• In this figure the intersection of polar
plot with –ve real axis is within unit
circle i.e. x>0

10
1G.M. 20log
x

= is negative 

• The angle o180∅ > −
oP.M. 180= +∅ is negative

• As gain margin & phase margin both are
negative therefore the system is
unstable.

Note:  
For a marginally stable system, the gain 
margin & phase margin both are 0. 

Example 
Draw the polar plot for the transfer 

function 
( )

1G(s)H(s)
s 1 Ts

=
+

Solution 
For the given transfer function, the 
magnitude & phase angle are 

( )
1G( jω)H( jω)

jω 1 jωT
=

+

∴ ( ) ( )G jω H jω

( )2

1

ω 1 ωT
=

+

and ( ) ( )G jω H jω∠

( ) ( )
o

o 1
o 1

0 90 tan ωT
90 tan ωT

−
−= = − −

+ +
Find the gain & phase angle at 
ω 0 & ω= = ∞  

𝛚𝛚 |𝐆𝐆(𝐣𝐣𝐣𝐣)𝐇𝐇(𝐣𝐣𝐣𝐣)| ∠𝐆𝐆(𝐣𝐣𝐣𝐣)𝐇𝐇(𝐣𝐣𝐣𝐣) 
0 ∞ −90o 
∞ 0 −180o 

Example 
Draw the polar plot for 

( )( )1 2

1G(s)H(s)
1 T s 1 T s

=
+ +

. 

Solution 
For the given transfer function, the 
magnitude & phase angle are 

( )( )1 2

1G( jω)H( jω)
1 jωT 1 jωT

=
+ +

∴ ( ) ( )G jω H jω
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( ) ( )2 2
1 2

1

1 ωT 1 ωT
=

+ +
and 

( ) ( ) ( ) ( )
o

1 1
1 2

0G jω H jω
tan ωT tan ωT− −∠ =

+ +

( ) ( )1 1
1 2tan ωT tan ωT− −= − −

Find the gain & phase angle at 
ω 0 &ω= = ∞  

ω  ( ) ( )G jω H jω ( ) ( )∠G jω H jω  

0 1 o0
∞  0 o180−  

5.3 NYQUIST PLOT 

Polar is the basis of Nyquist plot. For a 
closed loop system to be stable, the Nyquist 
plot of G(s)H(s) must encircle the (−1, j0) 
point as many times as the number of poles 
of G(s)H(s) that are in the right half of s-
plane, and the encirclement, if any, must be 
made in the counter clockwise direction. 
Nyquist stability criterion is based on the 
complex analysis result known as Cauchy’s 
principle of argument. 

5.3.1 NYQUIST STABILITY CRITERION 

Consider a system with block diagram 

The open loop & closed loop transfer 
function of the system are 
Open loop T.F.⇒ G(s)H(s)  

Closed loop T.F. G(s)
1 G(s)H(s)

⇒
+

For this system if 

1) P is the number of open loop poles on
the right hand side of s plane.

e.g. if ( ) ( ) ( )( )
1G s H s

1 s 1 s
=

+ −
The poles are at s 1 & s 1= − = hence 
P 1= . (s 1=  is the open loop pole on 
RHS of s-plane) 

2) Z is the number of closed loop poles on
the right hand side of s plane.
e.g. if the closed loop transfer function is

2

G(s) 1
1 G(s)H(s) s s 2

=
+ + −

The poles are at s 2 & s 1= − = hence Z =
1. ( s 1=  is the closed loop pole on RHS
of s-plane) 

3) N is the number of encirclement of
1 j0− +  point by the Nyquist plot in

anticlock wise direction.
Then the relation between N, P & Z is
N P Z= − . For a system to be stable the
number of encirclement should be
equal to the number of open loop poles
on RHS of s-plane.
i.e. N P=
∴ Z 0=  (number of closed loop poles on
RHS of s-plane is 0)

5.3.2 PROCEDURE TO DRAW NYQUIST 
PLOT 

The Nyquist plot is a polar plot of the 
function D(s) 1 G(s)H(s)= + when travels 
around the contour given in figure 
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• If the poles of the system lie on the RHS
of s-plane, the system will be unstable.

• The poles on the imaginary axis & at
origin make the system marginally
stable but not unstable they are not
covered under the curve.
The contour in this figure covers the
whole unstable half plane of the
complex plane s. The Nyquist plot for
the above contour can be drawn by
drawing the separate polar plot of the
curves 1 2 3 4S ,S ,S & S . 

5.3.3 TO DETERMINE THE STABILITY 
OF THE SYSTEM 

Consider a transfer function 

( )( )
KG(s)H(s)

s s 2 s 10
=

+ +
, open loop poles 

on the RHS of s-plane i.e. P = 0. The polar 
plot for the above transfer function will be 

Now to calculate intersection of polar plot 
with –ve real axis, 

( ) ( ) ( )( ) 3 2

K KG s H s
s s 2 s 10 s 12s 20s

  = =
+ + + +

( ) ( ) 3 2

KG jω H jω
jω 12ω j20ω

=
− − +

( )3 2

K
j 20ω ω 12ω

=
− −

Equating imaginary part to zero we get, 
3 220 0 20 20ω−ω = ⇒ω = ⇒ω=  

This frequency is nothing but the phase 
crossover frequency 𝜔𝜔𝑝𝑝𝑝𝑝 
Now substituting pc 20ω = ω = we get, 

( ) ( )
( )

2
KG jω H jω

j 0 12 20
=

−

K K=- =-
12×20 240

1) If K>240 then the intersection point will
greater than 1 0− + j  i.e. 1 0− + j  lies
inside the Nyquist plot, hence there are
2 encirclements of 1 0− + j  in the
clockwise direction

N 2∴ = − and also from the transfer
function
P 0=  (i.e. No of open loop poles on RHS
of s-plane)
As we know
N P Z= −
i.e. 2 0 Z− = −
Solving we get, Z 2=  it means that
there are 2 closed loop poles on RHS of
s-plane hence the system is unstable
for K>240.

2) If K<240, then the intersection point
will be smaller than 1 j0− +  i.e. 1 j0− +
lies outside the Nyquist plot, hence
there is no encirclement of 1 j0− + .

N 0∴ =  and also from the transfer
function
P = 0 (i.e. No of open loop poles on RHS
of s-plane)
As we know
N P Z= −
i.e. 0 0 Z= −
Solving we get, Z 0= it means that there
no closed loop poles on RHS of s-plane
hence the system is stable for K>240.

Example 
For a system with transfer function 

( )( )2

40(s)H(s)
s 4 s 2s 2

=
+ + +

, determine its 

stability & find gain margin. 
Solution 

( ) ( )
( )( )2

40G s H s
s 4 s 2s 2

=
+ + +

( ) ( )( ) ( )( )
40

s 4 s 1 i s 1 i
=

+ + − + +
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There are no open loop poles at origin or at 
imaginary axis; therefore we will draw 
polar plots only for 1 2 3S ,S ,& S . 

1) For 1S  draw the polar plot for given 
transfer function.

2) For 2S  draw the inverse polar plot for 
given transfer function.

3) For 3S  put jθ

R
s lim Re

→∞
=  where θ   varies 

from o o90 to 90+ −

4) To find the intersection of plot with –ve
real axis

( ) ( )
( )( ) 3 22

40 40G s H s
s 6s 10s 8s 4 s 2s 2

= =
+ + + ++ + +

put s jω=

( ) ( )3 2 3 2

40 40
jω 6ω j10ω 8 j 10ω ω 8 6ω

= =
− − + + − + −

now equate imaginary part to zero
3

pc10ω ω 0 ω 10− = ⇒ =
Now, the intersection with –ve real axis

is ( ) ( )
( )pc

2ω ω

40G s H s
j0 8 6 10

=
=

+ − ×

0.769= −
5) The point -1+j0 lies outside the Nyquist

plot, hence N=0. Also from the transfer 
function the number of open loop poles 

on RHS of s-plane is 0 i.e. P=0. We know 
that N=P-Z 
i.e. 0=0-Z Z 0∴ =  
Which means there are no closed loop 
poles on RHS of s-plane. Hence the 
system is stable. 

6) The gain margin can calculated as

10
1G.M. 20log 2.28dB

0.769
= = +  

Example:  
Consider a system with transfer function 

( ) ( ) ( )( )1 2T s 1 s
G H s

1
K

T
s =

+ +
& Nyquist plot 

Examine the stability of the system 
Solution:  
1) From the transfer function, the number

of open loop poles on the RHS of s-plane 
is 0 i.e.P = 0. 

2) The point -1+j0 lies outside the plot
hence N=0. 
We know that, 
N P Z= −  
i.e. 0 0 Z Z 0= − ⇒ = (no closed loop 
poles on RHS of s-plane). As  Z=0 the 
system is stable 

5.4 THE NICHOLS PLOT 

The Nichols plot is similar to the Nyquist 
plot in that it is a locus as a function ofω, 
the difference being the chosen axes. On a 
Nichols plot these are the magnitude in dB 
on the vertical axis & the phase in degrees 
on the horizontal axis. The origin is chosen 
as 0 dB and o180− .  For example, the 
Nichols plot for 

( )( )
10G(s)H(s)

s 1 0.1s 1 0.05s
=

+ +
is 
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The gain margin is the gain at the 
frequency at which phase angle is o180−  & 
the phase margin is the phase angle at the 
frequency at which gain is 0 dB. 
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Q.1 The Nyquist plot for the open-loop 
transfer function G(s) of a unity 
negative feedback system is shown 
in the figure, if G(s) has no pole in 
the right-half of s-plane, the number 
of roots of the system characteristic 
equation in the right-half of s-plane is 

a) 0 b) 1
c) 2 d) 3

[GATE-2001] 

Q.2 The system with the open loop 
transfer function 

( ) ( ) 2

1G s H s
s(s s 1)

=
+ +

has a gain

margin of 
a) 6dB− b) 0dB
c) 3.5dB d) 6dB

          [GATE-2002] 

Q.3 The gain margin and the phase 
margin of a feedback system with 

( ) ( )
( )3

sG s H s
s 100

=
+

 are

a) 0 dB,0° b) ,∞ ∞
c) ,0°∞ d) 88.5 dB,∞

[GATE-2003] 

Q.4  In the figure, the Nyquist plot of the 
open-loop transfer function G(s) 
H(s) of a system is shown. If  

G(s)H(s) has one right-hand pole. 
The closed –loop system is 

a) always stable
b) unstable with one closed-loop

right hand pole
c) unstable with two closed-loop

right hand poles
d) unstable with three closed-loop

right hand poles
[GATE-2003] 

Q.5 The approximate Bode magnitude 
plot of a minimum-phase system is 
shown in the figure. The transfer 
function of the system is  

a) ( )
( )

3
8

2

s 0.1
10

s 10 (s 100)
+

+ +

b) ( )3
7 s 0.1

10
(s 10)(s 100)

+
+ +

c) ( )
( ) ( )

2
8

2

s 0.1
10

s 10 s 100
+

+ +

d) ( )
( )( )

3
9

2

s 0.1
10

s 10 s 100
+

+ +
          [GATE-2003] 

GATE QUESTIONS(EC) 
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Q.6 Consider the Bode magnitude plot 
shown in the figure. The transfer 
function H(s) is  

a) 
( )

(s 10)
s 1 (s 100)

+
+ +

  b)
( )

10(s 1)
s 10 (s 100)

+
+ +

c) ( )
( )( )

210 s 1
s 10 s 100

+
+ +

d) ( )
( )( )

310 s 100
s 1 s 10

+
+ +

          [GATE-2004] 

Q.7 A system has poles at 0.01 Hz, 1 Hz 
and 80Hz; zeros at 5 Hz, 100 Hz and 
200 Hz. The approximate phase of 
the system response at 20 Hz is  
a) 90°− b) 0°
c) 90° d) 180°−

          [GATE-2004] 

Q.8 Which one of the following polar 
diagrams corresponds to a lag 
network? 
a) 

b) 

c) 

d) 

[GATE-2005] 
Q.9 The polar diagram of a conditionally 

stable system for open loop gain 
K=1 is shown in the figure. The open 
loop transfer function of the system 
is known to be stable. The closed 
loop system is stable for  

a) 1 1K 5 and K
2 8

< < <

b) 1 1K  and K 5
8 2

< < <

c) 1K  and 5 K
8

< <

d) 1K  and K 5
8

< <

      [GATE-2005] 

Common Data for Questions Q.10 & 
Q.11:  
The open loop transfer function of a unity 

feedback system is given by ( )
2s3eG s

s(s 2)

−

=
+
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Q.10 The gain and phase crossover 
frequencies in rad/sec are, 
respectively  
a) 0.632 and 1.26
b) 0.632 and 0.485
c) 0.485 and 0.632
d) 1.26 and 0.632

[GATE-2005] 

Q.11 Based on the above results, the gain 
and phase margins of the system 
will be  
a)-7.09 and87.5°   b)7.09 and87.5 
c)7.09 and-87.5°    d)-7.09 and-87.5° 

 [GATE-2005] 

Q.12 The open-loop transfer function of a 
unity-gain feedback control system 
is given by ( ) ( )

KG s
s 1 (s 2)

=
+ +

.The 

gain margin of the system in dB is 
given by  
a) 0 b) 1
c) 20 d)∞

[GATE -2006] 

Q.13 The Nyquist plot of ( )G j H( j )ω ω for
a closed loop control system, passed 
through ( 1, 0)− j point in the GH 
plane. The gain margin of the system 
in dB is equal to  
a)infinite      b)greater that zero  
c)less than zero d)zero  

[GATE-2006] 

Q.14 The asymptotic Bode plot of a 
transfer function is as shown in the 
figure. The transfer function G(s) 
corresponding to this Bode plot is  

a) 
( )

1
1 ( 20)+ +s s

   b) 
( )

1
1 ( 20)+ +s s s

c)
( )

100
1 ( 20)+ +s s s

d)
( )

100
1 (1 0.05 )+ +s s s

          [GATE-2007] 

Q.15 The magnitude of frequency 
response of an under damped 
second order system is 5 at 

0 rad/sec  and peaks to 10
3

at 

5 2 rad/sec . The transfer function of 
the system is  

a) 2

500
s +10s +100

b) 2

375
s + 5s +75

c) 2

720
s +12s +144

          d) 2

1125
s + 25s + 225

          [GATE-2008] 
Common data for Questions Q.16 & Q.17: 
The Nyquist plot of a stable transfer 
function G(s) is shown in the figure. We are 
interested in the stability of the closed loop 
system in the feedback configuration 
shown  

Q.16 Which of the following statement is 
true? 
a) G(s) is an all-pass filter
b) G(s) has a zero in the right –half

plane
c) G(s) is the impedance of a

passive network
d) G(s) is marginally stable

[GATE -2009] 

Q.17 The gain and phase margins of G(s) 
for closed loop stability are 
a) 6dB and 180°        b) 3dB and 180°
c) 6dB and 90° d) 3dB and 90°

[GATE-2009]

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



Q.18 For the asymptotic Bode magnitude 
plot shown below, the system 
transfer function can be  

a) 10s+1
0.1s+1

b) 100s+1
0.1s+1

c) 100s
10s+1

d) 0.1s+1
10s+1

 

          [GATE-2010] 

Q.19  For the transfer function, 
( )G j 5 jω = + ω , the corresponding

Nyquist plot for positive frequency 
has the form 
a) 

b) 

c) 

d) 

[GATE -2011] 

Q.20 The gain margin of the system under 
closed loop unity negative feedback 

is ( ) ( )
( )2

100=
S S

G H s
+10

s

a)0 dB b)20 dB 
c)26 dB d)46 dB 

[GATE -2011] 

Q.21 The Bode plot of transfer function 
G(s) is shown in the figure below. 

The gain (20log |G(s))| is dB and -8 
at 1 rad/s and 10rad/s respectively. 
The phase is negative for all ω. Then 
G(s) is  

a) 39.8
s

b) 2

39.8
s

c) 32
s

d) 2

32
s

        [GATE-2013] 

Q.22 Consider the feedback system 
shown in the figure. The Nyquist 
plot of G(s)  is also shown. Which 
one of the  following conclusions 
is correct?  

a) G(s) is an all-pass filter
b) G(s) is a strictly proper transfer

function
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c) G(s) is a stable and minimum-
phase transfer function

d) The closed-loop system is
unstable for sufficiently large
and positive k

[GATE-2014] 

Q.23 The phase margin in degrees of

( ) ( )( ) ( )
10

s 0.1 s 1 1
G

s 0
s

+ + + +
=

calculated using the asymptotic 
Bode  plot is ________. 

 [GATE-2014] 

Q.24 The Bode asymptotic magnitude 
plot of a minimum phase system is 
shown in the figure 

If the system is connected in a unity 
negative feedback configuration, the 
steady state error of the closed loop 
system, to a unit ramp input, is ______ 

 [GATE-2014] 
Q.25 In a Bode magnitude plot, which one 

of the following slopes would be 
exhibited at high frequencies by a 
4th order all-pole system?  
a) -80 dB/decade   b) -40 dB/decade
c) +40 dB/decade d) +80 dB/decade

 [GATE-2014] 

Q.26 The polar plot of the transfer 

function ( ) ( )10
0

s
s
1

G
1

s
+

+
= for 

0 ω≤ < ∞  will be in the 
a) first quadrant    b) second quadrant
c) third quadrant  d) fourth quadrant

 [GATE-2015] 

Q.27 A closed-loop control system is 
stable if the Nyquist plot of the 
corresponding open-loop transfer 
function 

a) encircles the s-plane point (-
1+j0) in the counterclockwise
direction as many times as the
number of right-half s-plane poles.

b) encircles the s-plane point (0 - jl)
in the clockwise direction as
many times as the number of
right-half s-plane poles.

c) encircles the s-plane point (-1+
j0) in the counterclockwise
direction as many times as the
number of left-half s-plane poles.

d) encircles the s-plane point (1+j0)
in the counterclockwise direction
as many times as the number of
right-half s-plane zeros

[GATE-2016] 

Q.28 The number and direction of 
encirclements around the point –1 + 
j0 in the complex plane by the 

Nyquist plot of ( ) 1 s
s

s
2

G
4

=
−
+

 is 

a) zero
b) one, anti-clockwise
c) one, clockwise
d) two, clockwise.

[GATE-2016] 

Q.29 In the feedback system shown 

below  ( ) 1
(s 1)(s 2)(

G
s )

s
3+ +

=
+

The positive value of k for which the 
gain margin of the loop is exactly 0 
dB and the phase margin of the loop 
is exactly zero degree is __________. 

[GATE-2016] 

Q.30 The asymptotic Bode phase plot of 

( )
1

1
(s 0.1)(s 10)(s p )

G s =
+ + +

, with k 

& 1p  both positive, is shown below.    
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The value of 1p  is _______. 
[GATE-2016] 

Q.31 The Nyquist stability criterion and the 
Routh criterion both are powerful 
analysis tools for determining the 
stability of feedback controllers. 
Identify which of the following 
statements is FALSE 

a) Both the criteria provide
information relative to the stable gain 
range of the system. 
b) The general shape of the Nyquist
plot is readily obtained from the Bode 
magnitude plot for all minimum phase 
systems. 
c) The Routh criterion is not
applicable in the condition of transport 
lag, which can be readily handled by 
the Nyquist criterion. 
d) The closed-loop frequency
response for a unity feedback system 
cannot be obtained from the Nyquist 
plot. 

[GATE-2018] 

Q.32 The figure below shows the Bode 
magnitude and phase plots of a stable 
transfer function  

( ) 0
3 2

2 1 0

nG s
s d s d s d

=
+ + +

Consider the negative unity feedback 
configuration with gain k in the feed 
forward path. The closed loop is stable 

for 0k k< . The maximum value of 0k  
is ________ 

[GATE-2018] 

Q.33 For a unity feedback control system 
with the forward path transfer 
function 

( ) ( )
KG s

s s 2
=

+
The peak resonant magnitude Mr of 
the closed-loop frequency response 
is 2. The corresponding value of 
the gain K (correct to two  decimal 
places) is _______. 

[GATE-2018] 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
(a) (b) (b) (a) (a) (c) (a) (d) (b) (d) (d) (d) (d) (d) (a) 
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
(b) (c) (a) (a) (c) (b) (d) 45 0.5 (a) (a) (a) (a) 60 1 
31 32 33 
(d) 0.1 14.92 

ANSWER  KEY: 
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Q.1 (a) 
N 0= (1encircle mention CW 
direction  
and other in CCW) 
P=0 (no pole in right half) 
So,  N P Z= −  
Z P N 0= − =  
∴ No roots on RH of s-plane. 

Q.2 (b) 

( ) ( ) 2

1G s H s
s(s s 1)

=
+ +

ωφ when ( ) ( )of  G s H s 180∠ = − °

-1
2

ω-180 = -90 - tan -9
1-ω

-1
2

ω= -tan
1-ω

21- ω = 0  
ω 1 rad/secφ =

Value of gain at ω 1φ =  

( ) ( )
( ) 2 22

1G s H s =
1-ω + jω

G.M. 20log1 0∴ = − =  

Q.3 (b) 

( ) ( )
( )3

sG s H s
s 100

=
+

G.M. and P.M. of the system cannot 
be determined. 

Q.4 (a) 
The encirclement of critical point (-
1, 0) in A.C.W direction is once.  

N 1,P 1∴ = =   (given) 
Z P N 0= − =  
No zero in RH of s-plane. So system 
is stable. 

Q.5  (a) 
ω 0.1to10, 120dB change= +  
∴ 3 zeros at 0.1 
ω 10to100, 40dB= −   
[ ]i.e. 60to 20 change+ +
So two poles at ω=10  
ω 100, 20dB change= −  
∴ one pole at ω 100=  

( ) ( )
( )

3

2

K s 0.1
T s

s 10 (s 100)
+

∴ =
+ +

( ) ω 1020log log K / ω | 140= =  
7

ω 10
K | 10
ω = =

8K 10∴ =  

Q.6 (c) 
20log K 20dB= −  

1K 10 0.1−⇒ = =
Zero at ω 1= & poles at ω 10,100=    

( ) K(s 1)H s
s s1 1

10 100

+
=
  + +  
   

( )
0.1(s 1) 10 100

s 10 (s 100)
+ × ×

=
+ +

( )
100(s 1)

s 10 (s 100)
+

=
+ +

 Q.7 (a) 
Pole at 0.01 and 1 Hz gives 180°−  
phase. Zero at 5 Hz gives +90° 
phase  
∴ at 20Hz 90°−  phase shift is 
provided. 

Q.8 (d) 

Let 1
s 1+

 be a lag network 

At -1ω = 0, Mag = ,  = -tan 0 = 0∞ ∠

EXPLANATIONS 
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ω ,Mag 0,∠= ∞ = 1tan 90−= − ∞ = − °  
If in the direction of ω  increasing 
phase shift is decreasing system is 
lag network. 

Q.9 (b) 

System is stable in region -0.2 to -2 
& on the left side of -8 as no. of 
encirclement there is zero. 
0.2K 1 K 5< ⇒ <  
2K 1 K 0.5> ⇒ >  

0.5 K 51 8K∴ < < >  
1K
8

<   (negative sign only shows 

that it is on negative axis) 

Q.10 (d) 
1. Gain cross over frequency where
gain is  G(s) 1=  

( )1/22

3 1
ω ω 4

⇒ =
+

 

( )2 2

9 1
ω ω 4

⇒ =
+

 

gω 1.26⇒ =
Phases cross over frequency 
Where GH 180°∠ =   

Φ
Φ Φ

ωω 0.632 cot 2ω
2

 ⇒ = = 
 

Q.11 (d) 

G.M at  Φ 2 1/2

3ω
0.632(0.632 4)

=
+

a 2.26=  
1G.M 20log
a

=

120log 7.09
2.26

⇒ = −

Since G.M is negative system is 
unstable. 

P.M.is also negative∴  
P.M. 87.5°= −  

Q.12 (d) 
For 2nd order system GM=∞ 

Q.13 (d) 
1G.M 20log dB
a

=

a=1 
G.M. 0∴ =  

Q.14 (d) 

( ) ( )
KG s

s s 1 (s 20)
=

+ +
K 20

ss(1 s) 1
20

×
=

 + + 
 

Bode plot is in (1+sT) form 

ω 0.1
K20log | 60dB 1000
ω = = =

K 5⇒ =

( ) ( )
100G s

s s 1 (1 0.5s)
∴ =

+ +

Q.17 (c) 
1GainMargin 20log
X

=

120log
0.5

=

20log 2=  
= 6dB 
And phase margin = 90° 
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Q.18 (a) 
System transfer function 

( ) ( )

sK 1
0.1G s H s
s1

10

 + 
 =
 + 
 

Here, 20logK 0=  
K 1⇒ =

Therefore, ( ) ( ) 10s 1G s H s
0.1s 1

+
=

+

Q.19 (b) 
( )G jω 5 jω= +

( ) 2G jω 25 ω= +
At  ω 0=  

( )G 0 25 0 5= + =
At ω = ∞

( )G ∞ = ∞

Q.20 (c) 

( )(S) (S) 2
100G H

s s 10
=

+

( )1Φ 90° 2 tan ω /10−= − −
For phase cross–over frequency, 
Φ 180°= −  

180 90°∴− = −  
( )12 tan ω /10−−

ω 10rad / sec⇒ =
Put,  s jω=  

( )( jω) ( jω) 2
100G H

jω jω 100
=

+

( j ) ( j ) 10
G H

=ω ω ω

( ) ( )2

100 100 1
10 200 20100

= = =
+ω ω

G.M.in dB 20log 20 26dB= =  

Q.21 (b) 

ω 1 to ω 10= =  
Is 1 dec are change & change is (G) 
is 40 dB 

S lope is 40dB / dec∴  
There are 2poles is orign∴  

So, ( ) 2

KG s
S

=

( )atω 1G 32dB given
=
=

2
ω 1

k2log 32dB
ω =

⇒ =  

20log k 32dB k 39.8⇒ = ⇒ =

2

39.8G
S

∴ =

Q.22 (d) 
For larger values of K, it will encircle 
the critical point (-1+j0), which 
makes  closed-loop system unstable.  

Q.24 (0.50) 

→ Due to initial slope, it is a type-1 
system, and it has non zero velocity 
error coefficient (Kv) 
→ The magnitude plot is giving 0dB 
at 2r/sec.  
Which gives Kv

∴    vk 2=
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The steady state error  ss
v

Ae
k

=

given unit ramp input; A =1 

ss
1e
2

=

             sse 0.50=

Q.25  (a) 
→In a BODE diagram, in plotting the 
magnitude with respect to frequency, 
a pole introduce a line 4 slope-20dB 
/ dc 
→If 4th order all-pole system means 
gives a slope of (-20) * 4 dB / dec i.e. 
-80dB / dec  

Q.26   (a) 

( ) 10(
0

s s
1

G 1)
s

+
+

=

Put s= jω 
10(jω+1)
(

G(jω
jω

) =
+10)

ω 0,M 1 0= = <  
ω ,M 10 0= ∞ = <

So, zero is nearer to imaginary axis. 
Hence plot will move clockwise 
direction.  
It is first quadrant.  

Q.28 (a) 

G(j ) 1 j
4 2j
− ω
+

=ω
ω

0,   0.25, G( j )G 0jω ω ∠ ω= = =
o ,1G( ) 0.5,G( j )  –180 Nj 0= ∞ = =ω ω =ω

Q.29 (60) 
The given condition implied 
marginal stability. One alternative 
way without going for gain margin, 

phase margin concepts is find k 
value for marginal stability using 
reflection.  
C.E:-  3 2s +11s + 6s + 6k = 0  

For marginal stability odd order row 
of S should be zero i.e. 
60 k

1
k

1
0 60= ⇒ =

−

Q.30 (1)  
Since it is the phase plot given we 
can't use the slope concept as these 
are non linear curves.  

So we can take any phase angle of at 
a given frequency as reference and 
can obtain 1p
→   phase of transfer function 

( ) 1 1 1

1

tan tan tan
0.1 10 P

− − −  ω ω ω   ∅ ω = − − −     
     

 

 0from the plot at 0.1, 45→ ω= ∅ = −

0 -1 -1 -1

1

0.1 0.1 0.1-45 = - tan + tan + tan
0.1 10 P

 
 
 

Solving for P, we get p1 = 1. 

Q.31 (d) 
Let us consider O.L.T.F. of a unity 
feedback system as 

( ) ( )
KG s

s s a
=

+
Which represents a type-1 and 
order-2 system for which Nyquist 
plot will be as shown below: 
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Closed loop transfer function for the 
system is given as, 

( ) ( )
( )

G s
T s

1 G s .1
=

+

( )
( )

K / s s a
1 K / s s a

+
=

+ +  

( ) 2

KT s
s as K

=
+ +

We can draw its Nyquist plot by 
simply substituting s j= ω and 
obtain  polar co-ordinates of ( )T jω
for different values of ω  as, 

( )
( )2

KT j
j ja K

ω =
ω + ω+

( ) ( )
KT 0 1

0 0 K
= =

+ +
 

( )T 0∞ =
Hence statement given in option (D) 
is FALSE. 

Q.32 0.1 

Magnitude and phase angle plots for 
unstable system with 

( ) 0
3 2

2 1 0

nG s
s d s d s d

=
+ + +

Let ( ) ( )G ' s K.G s=
For the closed loop system to be 
stable 
GM 1>  

( )
pc

1 1
G ' j

ω=ω

>
ω

 

( )
pc

G ' j 1
ω=ω

ω <  (or 0 dB) 

( )
pc

20 log K G j 0dB
ω=ω

+ ω <  

20log K 20dB 0dB+ <  
20log K 20dB< −  
log K 1< −  
Hence, Maximum value of K i.e. 0K , 
for which system is stable is given as 

( ) 1
max 0K K 10 0.1−= = =  

Q.33 14.92 
Given: For a unity feedback system 

( ) ( )
KG s

s s 2
=

+
and resonant peak 

rM 2=  

We can find its closed loop transfer 
function as, 
( )
( ) ( ) ( )

( ) ( )
( )

( )
2

C s G s
T s

R s 1 G s H s

K / s s 2 K
K s 2s K1 .1

s s 2

= =
+

+
= =

+ ++
+

Here, one should note that the value of 
D.C. gain is 1, not ‘K’. 

We have formula for resonant peak as, 

r 2

DCgainM
2 1

=
ξ −ξ

Substituting the given value of rM and 
obtained D.C. gain, we get 

2

1 2
2 1

=
ξ −ξ

 

24 1 1ξ − ξ =  
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On squaring both the sides, 
( )2 216 1 1ξ − ξ =

4 216 16 1 0ξ − ξ + =  

If we put 2 xξ = then equation 
becomes 

216x 16x 1 0− + =  
x 0.067=  
We have, 2 x 0.067ξ = =  

0.067 0.258ξ = =  
Here, characteristic equation is 

2s 2s K 0+ + =  
Comparing it with standard equation, 
we get 

2
n nK Kω = ⇒ω =

And n2 2ξω =  

n

1 1
K

ξ = =
ω

Hence, 2

1K 14.92= =
ξ
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Q.1 The polar plot of a type-1, 3-pole, 
open loop system is shown in figure 
below. The closed loop system is.  

a) Always stable.
b) Marginally stable.
c) Unstable with one pole on the

right half s-plane.
d) Unstable with two poles on the

right half s-plane.
 [GATE-2001] 

Q.2 The asymptotic approximation of 
the log-magnitude versus frequency 
plot of a minimum phase system 
with real poles and one zero is 
shown in figure. Its transfer function 
is 

a) ( )
( )( )

20 s 5
s s 2 s 25

+
+ +

b) ( )
( ) ( )2

10 s 5
s 2 s 25

+

+ +

c)
( )2

20(s 5)
s s 2 (s 25)

+
+ +

 d)
( )2

50( 5)
2 ( 25)
+

+ +
s

s s s
[GATE-2001] 

Q.3 The asymptotic Bode plot of the 
transfer function K/[1+(s/a)] is 
given in figure. The error in phase  

angle and dB gain at a frequency of 
ω = 0.5 a are respectively 

a) °4.9 , 0.97dB b) °5.7 , 3dB
c) °4.9 , 3dB d) °5.7 , 0.97dB

[GATE-2003] 

Q.4 The Nyquist plot of loop transfer 
function G(s)H(s) of a closed loop 
control system passes through the 
point (-1, j0) in the G(s)H(s) plane. 
The phase margin of the system is 
a) 0° b) 45°
c) 90° d) 180°

[GATE-2004] 

Q.5 In the system shown in figure, the 
input ( )x t sin t= . In the steady-
state, the response ( )y t will be

a) ( )°1 sin t - 45
2

  b) ( )1 sin t 45
2

°+

c) ( )sin t 45°−  
        d) ( )°sin t+45

[GATE-2004] 

Q.6 The open loop transfer function of a 
unity feedback control system is 
given as  

GATE QUESTIONS(EE) 
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( ) 2

as 1G s
s
+

= . The value of ‘a’ to give 

a phase margin of  45° is equal to 
a) 0.141 b) 0.441
c) 0.841 d) 1.141

[GATE-2004] 
Q.7 A system with zero initial conditions 

has the closed loop transfer 
function. 

( ) ( )
( )( )

2s 4
T s

s 1 s 4
+

=
+ +

The system output is zero at the 
frequency  
a) 0.5 rad / sec b) 1 rad / sec
c) 2 rad / sec d) 4 rad / sec

[GATE-2005] 

Q.8 The gain margin of a unity feedback 
control system with the open loop 

transfer function ( ) ( )
2

s 1
G s

s
+

= is 

a) 0 b) 1
2

c) 2 d) ∞
 [GATE-2005] 

Q.9 In the GH(s) plane, the Nyquist plot 
of the loop transfer function 

( ) ( )
0.25seG s H s
s

−π
= passes through 

the negative real axis at the point 
a) (-0.25, j0) b) (-0.5, j0)
c) (-1, j0) d) (-0.2, j0)

 [GATE-2005] 

Q.10 If the compensated system shown in 
the figure has a phase margin of 60°  
at the crossover frequency of 1 
rad/sec, then value of the gain k is 

a) 0.366 b) 0.732
c) 1.366 d) 2.738

 [GATE-2005] 

Q.11 The Bode magnitude plot of 

( ) ( )
( )( )

4

2

10 1 j
H j

10 j 100 j
+ ω

ω =
+ ω + ω

is 

a) 

b) 

c) 

d) 

 [GATE-2006] 
Q.12 Consider the following Nyquist plots 

of loop transfer functions over 0ω =  
to ω = ∞ . Which of these plots 
represents a stable closed loop 
system? 

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



a) (1) only b) all except (1)
c) all except (3)      d)(1) and (2) only

[GATE-2006] 

Q.13 If ( )x ReG j ,= ω & y lmG( j )= ω then

for 0+ω→ , the Nyquist plot for 
( ) ( )( )G s 1/ s s 1 s 2= + +

a) x 0= b) x 3 / 4= −

c) x y 1/ 6= − d) yx
3

=

           [GATE-2007] 

Q.14 The asymptotic Bode magnitude 
plot of a minimum phase transfer 
function is shown in the figure. This 
transfer function has 

a) Three poles and one zero
b) Two poles and one zero
c) Two poles and two zeros
d) One pole and two zeros

[GATE-2008] 
Q.15 The polar plot of an open loop stable 

system is shown below. The closed 
loop system is 

a) always stable

b) marginally stable
c) unstable with one pole on the

RHS s-plane
d) unstable with two poles on the

RHSs-plane
           [GATE-2009] 

Q.16 The asymptotic approximation of 
the log-magnitude vs frequency plot 
of a system containing only real 
poles and zeros is shown. Its 
transfer function is 

a) ( )
( )( )

10 s+5
s s+2 s+25

b) ( )
( )( )2

1000 s+5
s s+2 s+25

c) ( )
( )( )
100 s+5

s s+2 s+25
     d) ( )

( )( )2

80 s+5
s s+2 s+25

           [GATE-2009] 

Q.17 The open loop transfer function of a 
unity feedback system is given by
( ) -0.1sG s =(e )/s . The gain margin of

this system is  
a) 11.95 dB b) 17.67dB
c) 21.33 dB d) 23.9dB

[GATE-2009] 

Q.18 The frequency response G(s) 
=1/[s(s+1) (s+2)] plotted in the 
complex G(jω) plane (for 0 < ω<∞) is  
a) 

b)
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c) 

d) 

[GATE-2010] 

Q.19 The frequency response of a linear 
system is provided in the tabular 
form below   

The gain margin and phase margin 
of the system are 
a)6dB and 30° b)6dB and -30° 
c)-6dB and 30° d)-6dBand-30°  

           [GATE-2011] 

Q.20  A system with transfer function 

( ) ( )( )
( )( )( )

2s +9 s+2
G s =

s+1 s+3 s+4
is excited sin 

(ωt). 
The steady-state output of the 
system is zero at 
a)ω =1 rad/s b)ω =2 rad/s 
c)ω =3 rad/s d)ω =4 rad/s 

[GATE-2012] 

Q.21 The Bode plot of transfer function 
G(s) is shown in the figure below. 

The gain (20log |G(s))| is dB and -8 
at 1 rad/s and 10rad/s respectively. 
The phase is negative for all ωThen 
G(s) is  

a) 39.8
s

b)
2

39.8
s

c) 32
s

d)
2

32
s

        [GATE-2013] 

Q.22 For the transfer function  

( ) ( ) 2

5(S 4)G s
s s 0.25 (s 4s 25)

+
=

+ + +
The values of the constant gain term 
and the highest corner frequency of 
the Bode plot respectively are  
a)3.2, 5.0 b)16.0, 4.0 
c)3,2, 4.0 d)16.0, 5.0 

 [GATE-2014] 

Q.23 The magnitude Bode plot of a 
network is shown in the figure 

The maximum phase angle .m and 
the corresponding gain Gm 
respectively, are  
a) -30° and 1.73dB
b) -30° and 4.77dB
c) +30° and 4.77dB
d) +30° and 1.73dB

 [GATE-2014] 

Q.24 Nyquist plots of two functions G1(s) 
and G2(s) are shown in figure. 
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Nyquist plot of the product of G1(s) 
and nG2(s) is 
a) 

b) 

c) 

d) 

[GATE-2015] 

Q.25 The phase cross-over frequency of 

the transfer function ( ) 3

100
( )

G
s

s
1

=
+

in rad/s is 

a) 3 b) 1
3

c) 3 d) 3 3
 [GATE-2016] 

Q.26 Consider the following asymptotic 
Bode magnitude plot (ω is in 
rad/s).  

Which one of the following transfer 
function is best represented by the 
above Bode magnitude plot?  

a) 2

2
(1 0.5 )(1 0.25 )+ +

s
s s

b) 4(1 0.5s)
s(1 0.25s

+
+

c) 2
(1 2 )(1 4 )+ +

s
s s

d) 2

4
(1 2 )(1 4 )+ +

s
s s

 [GATE-2016] 

Q.27 Loop transfer function of a feedback 

system is 2

s 3G(s)H(s)
s (s 3)

+
=

−
.Take 

the Nyquist contour in the clockwise 
direction. Then the Nyquist plot of 
G(s) H(s) encircles -1 + j 0  
a) Once in clockwise direction
b) Twice in clockwise direction
c) Once in anticlockwise direction
d) Twice in anti clockwise direction

 [GATE-2016] 
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ANSWER  KEY: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(d) (d) (d) (a) (b) (c) (c) (a) (b) (c) (a) (a) (b) (c) (d) 
16 17 18 19 20 21 22 23 24 25 26 27 
(b) (d) (a) (a) (c) (b) (a) (c) (b) (a) (a) (a) 
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Q.1 (d) 
Nyquist plot will be. 

∴ number of encirclement of (-1, j0) 
=-2 and number of right sided pole 
in open loop system=0 
N P Z= −  
∴ 2 0 2− = −

Z 2⇒ =
∴ Closed loop system is unstable 
with two poles on the right half of s-
plane. 

Q.2 (d) 
Type : 2 
Poles = 0, 0, 2, 25 
Zero =5 
Gain mlogω 20logk= +
54 40log(0.1) 20logk= − +

k 5⇒ =

2

5(1 0.2S)T.F.
s (1 0.5S)(1 0.04S)

+
∴ =

+ +

2

50(S 5)
s (S 2)(S 25)

+
=

+ +

Q.3 (d) 

Transfer function ( ) kG s s1
a

= =
+

Put s = jω  

( ) kG jω  = ω1+j
a

Magnitude of ( )G jω

( )
2

2

k= G jω
ω1+
a

Phase of  ( ) ( )G jω G jω∠

1 ωtan
a

−  = −  
 

 

at ω = 0.5a

( )
( )ω 0.5a 2

2

k kG jω
1.250.5a

1
a

=
= =

+

In dB 
1/220 log k 20log(1.25)= −

20log k 0.97dB= −  
From the plot 
Magnitude 20log k=  
∴ error in dB gain =0.97dB 

1
ω 0.5a

0.5aG( jω) tan
a

∠ −
=

 = −  
 

10
0.5a 0log
0.1a 45

φ
°

−  =  − 
°

ω 0.5aG(jω) 31.45∠ φ
=

= = −  
Error in phase-angle 

° °26.56 ( 31.45 )= − − −  
° °5.89 5.7= ≈  

Q.4 (a) 

gω is gain cross over frequency at 

which the gain ( ) ( )G jω H jω
becomes unity. 

EXPLANATIONS 
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In this case, phase 
( ) ( ) °G jω H jω is 180∠ −  at

gω ω= . 
° = -180φ

So phase margin ° °180 0φ= + =  

Q.5 (b) 
( )x t sin sin t 1 0= = <

ω 1rad / sec=  

Transfer function ( ) sG s
s 1

= =
+

For sinusoidal input, s jω j= =  

( ) °
ω 1

jω j 1G jω 45
jω 1 j 1 2

∠
=
= = =

+ +

( ) ° ° °1 1y t 45 .1 0 45
2 2
∠ ∠ ∠= =  

( ) ( )°1y t sin t 45
2

= +

Q.6 (c) 

( ) 2

as 1G s
s
+

=

gω = gain-crossover frequency at 
which open gain is loop 
Phase margin ( )°180 G jω∠= +

° °
g45 180 G( jω )∠= +  

( ) °
gG jω 130∠ = −

( )
( )

g
g 2

g

jaω 1
G jω

jω
∠

+
=

° 1
g2 90 tan aω−= − × +

( ) ° 1 °
g gG jω 180 tan aω 135∠ −= − + = −

1 °
gtan aω 45− = −

gaω 1=  

g
1ω
a

=

Gain ( )gG jω 1= =  

⇒
2 2

g
2
g

1 a ω
1

ω
+

=  

⇒

2
2

2

11 a
a 1

1/ a

+ ×
=

2

1 2
a

=

1/4

1a 0.841
2

= =  

Q.7 (c) 

( ) ( ) ( )
2s 4T s

s 1 s 4
+

=
+ +

For frequency response, put 
s jω=  

( ) ( )
( )

( ) ( )

2

2

jω 4
T jω

jω 1 ( jω 4)

4 ω
1 jω 4 jω

+
=

+ +

−
=

+ +
Magnitude of  

( ) ( )
2

2 2

4 ωT jω T jω
(1 ω )(16 ω)

−
=

+ +

( )
2

2 2

4 ωT jω 0
(1 ω )(16 ω)

−
=

+ +
 

ω 2rad / sec=   
The system output is zero at 2 rad/ 
sec. 

Q.8 (a) 
pcω =Phase cross over frequency at 

which phase angle of OLTF is °180−  
or at which OLTF cuts real axis 
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( ) ( ) ( ) ( )T s OLTF G s H s G s .1 G(s)= = = =

( ) 2

s 1T s
s
+

=

( )
( )

pc
pc 2

pc

jω 1
T jω

jω

+
=

( ) ° 1
pc pcT jω 180 tan ω∠ −= − +

OLTF cuts real axis at pcω , so at pcω

phase of OLTF is °180−  
( ) ° 1

pc pcT jω 180 tan ω∠ −= − +
° ° 1

pc180 180 tan ω−− = − +

pcω 0=  

( )
2
pc

pc 2
pc

1 ω
M T jω

ω
∞

+
= = =  

Gain margin 1 1 0
M ∞

= = =  

Q.9 (b) 

( ) ( )
0.25sπeG s H s
s

−

=

Putting s jω= , for frequency 
response 

= ( ) ( )
j0.25ωπeG jω H jω

jω

−

=

Phase angle ( ) ( )G jω H jω∠
90 0.25ω= − − pcω  at  nyquist plot 

cuts negative real axis and this 
frequency  

( ) ( ) °
pc pcG jω H jω is 180∠= −

( ) ( ) °
pc pc

ωG jω H jω 90
4

∠ = − −

° ° °ω180 90 ω 360 or2π
4

− = − − =

( ) ( )
j π

pc pc

πeG jω H jω
j π

0.25 2

2

− ×

=

j π πcos jsin 0.5 j0
2 2 2
 = − − = − +  

 

Q.10 (c) 

( ) ( ) ( )k 0.366sG s andH s 1
s s 1
+

= =
+

( ) ( )
k 0.366sOLTF G s H(s)

s s 1
+

= =
+

Phase margin °60=  at gcω  (gain 
cross over frequency) 

( ) ( )° °
pc pc180 G jω H jω 60∠⇒ + =

( ) ( ) ° °
gc gcG jω H jω 120 90∠ = − −

gc1 1
gc

0.366ω
tan ω tan

k
− −  

− +  
 

°120= −  
( )° 1

gcω 1rad / sec 90 tan 1−= − −

1 °0.366 1tan 120
k

− × + = − 
 

 

° ° 1 0.36690 45 tan
k

−  = − − +  
 

°120= −  

⇒ 1 °0.366tan 15
k

−   = 
 

⇒ °

0.366k 1.366
tan15

  = 
 

Q.11 (a) 

( ) ( )
( ) ( )

4

2

10 1 jω
H jω

10 jω 100 jω
+

=
+ +

( )
2

1 jω
jω jω10 1 1
10 100

+
=

   × + × +   
   

( ) ( )
2

k 1 jω
H jω

jω jω1 1
10 100

+
=
  + +  
   

Where 1k 0.1
10

= =

Corner frequencies 
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1ω 1rad / sec=  

2ω 10rad / sec=  
and 3ω 100rad / sec=
For frequency less than 1 1ω i.e.ω ω<
Gain of the system is constant as 
there is no pole at origin. 
Gain 20log k 20log 0.1 20dB= = =  
At 

1 1ω ω 1rad / secor log ω log 0= = ==  
There is Zero, so system gain 
increases with slope +20 dB/decade 
and system gain becomes 0 dB at 
ω 10rad / secor=  

10ω 10logω log 1
=

= =  
At 2 2 10ω 10 or log ω ω log10 1== = =  
There is pole, so slope is -20 dB/ 
decade. 
Overall slope 2 3ω ω ω< <  
=20 dB/decade-20 dB/decade 
=0 dB/decade 
So, gain remains constant between

2 3ω ω ω< <  
or  1 logω 2< <
At 3ω ω 100rad / secor= =

3log ω ω 100 log100 2− = = =  
The double poles are present. 
So, system gain decrease with -40 
dB/ decade. 

Q.12 (a) 
Assuming no. of open loop poles in 
the RHS of s-plane=P=0 Complete 
nyquist plots. 
1.  

No. of encirclements = N=0 
N=P-Z=0 
⇒ 0-Z=0
⇒ Z=0
Hence system is stable. 
2. 

Two anti-clockwise encirclement 
N=2 
P-Z=N=2 
⇒ 0-Z=2
Z=2 
Hence system is unstable. 
3. 

Two clockwise encirclement of -1 
Hence N=-2 
P-Z=N=-2 
⇒ 0-Z=-2
Z=2 
Hence the system is unstable. 
4.
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Two clockwise encirclement of -1 
Hence N=-2 
⇒ P-Z=N=-2
Z=2 
Hence the system is unstable. 
So, option (a) is correct. 

Q.13 (b) 

( ) ( ) ( )
1G s

s s 1 s 2
=

+ +
Put s jω=  

( ) ( ) ( )
( ) ( )
( ) ( )2 2

j 1 jω 2 jω1G jω
jω 1 jω 2 jω ω 1 ω 4 ω

− − −
= =

+ + + +

( )
( ) ( )

( )
( ) ( )

2 2

2 2 2 2

j 2 3jω ω 3ω j 2 ω

ω 1 ω 4 ω ω 1 ω 4 ω

− − − − − −
= =

+ + + +

( ) ( )
( )

( ) ( )
2

2 2 2 2

j ω 23
1 ω 4 ω ω 1 ω 4 ω

−−
= +

+ + + +

At  3ω 0,x ,y
4

→ → − → −∞

Q.14 (c) 
Initial slope is -40dB/ decade, it 
means there are double pole at 
origin. 
Slope changes from -40dB/ decade 
to -20dB/ decade. It means there is 
a zero.  
Slope changes from -20dB/ decade 
to 0dB/ decade at some other 
frequency. It means there is one 
more zero.  
Therefore transfer function has two 
poles and two zeros. 

Q.15 (d) 

Two clockwise encirclement of 1+j0 
N 2= −  
Open-loop system is stable 

P 0⇒ =
N P Z 2 0 Z= − − = −  
Z=No. of closed loop poles in RHS of 
8-planes. 
Hence the system is unstable. 

Q.16 (b) 
Initial slope= -40 dB/dec. 
Hence the system is type-2. So the 
corresponding term of the transfer 
function is 21/ s . 
At ω=2rad/s, slope changes by -20 
dB/dec. from -40 dB/dec to -60 
dB/dec. Hence the corresponding 
term of the transfer function is

1
s1
2

 + 
 

. At ω=5 rad/s, slope 

changes by 20 dB/dec from -60 
dB/dec to -40 dB/dec. Hence, the 
corresponding term of the transfer 

function is s1
5

 + 
 

. 

At ω=25the slope changes by -20 
dB/dec. from -40 dB/dec to -60 
dB/dec. Hence the corresponding 
term of the transfer function is

1
s1

25

 
 

+ 
 

. 
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( )
2

sk 1
5G s

s ss 1 1
2 25

 + 
 =

  + +  
   

At ( )ω 0.1 ω 2rad / sec= ≤
Gain in 
dB 20log k 40log ω= −  
80 20log k 40log 0.1= −  
20log k 40=
k 100=  

( )
2

s100 1
5G s

s ss 1 1
2 25

 + 
 =

  + +  
   
( )

( ) ( )2

1000 s 5
s s 2 s 25

+
=

+ +

Q.17 (d) 
Open loop transfer function, 

( )
0.1seG s
s

−

=

Put  s jω=  

( )
j0.1ωeG jω
jω

−

=

At phase crossover frequency pc(ω ) , 

phase of OLTF is °180−

( )
pc

°
ω ω

πG jω 180 π
2

∠ = − = − −


             pc0.1ω π− = −

pc
π0.1ω
2

− = −

pcω 5π=  
j0.1ωe− is always 1 for any value of 𝜔𝜔 

( ) 1G jω
ω

=

Gain at pcω  (phase-cross frequency) 

( )
pc 5ω

1G jω
5π=

=

Gain margin 
( )pc

120log
G jω

=

20log5π 23.9dB= =  

Q.18 (a) 

( ) ( ) ( )
1G s

s s 1 s 2
=

+ +

Put ( )s jω=

( ) ( ) ( )
1G jω

jω 1 jω 2 jω
=

+ +

( ) ( )
( ) ( )
( ) ( )
1 jω 2 jω1

jω 1 jω 2 jω 1 jω 2 jω
− −

= ×
+ + − −

( )
( ) ( )

2

2 2

2 jω 2jω ω

jω 1 ω 4 ω

− − −
=

− +

( )
( ) ( )

2

2 2

2 ω 3jω

jω 1 ω 4 ω

− −
=

+ +

( ) ( )
( )

( ) ( )
2

2 2 2 2

ω 23 j
1 ω 4 ω ω 1 ω 4 ω

−−
= +

+ + + +

( ) ( ) ( )2 2

3Re G jω
1 ω 4 ω

−
   + +

and 

( ) ( ) ( )
2

2 2

ω 2imj G jω
ω 1 ω 4 ω

−
   + +

As ( ) 3ω 0,Re G jω
4

 → → − 

and     ( )lmj G jω  → −∞ 
As ( )Re G jω 0  → −  ,

And  ( )lmj G jω 0  → + 
at  pcω ω=  
Phase across frequency, the plot 
crosses negative real axis and 
imaginary part of G(jω) is zero.         

( ) ( ) ( )
2

pc
pc 2 2

pc pc pc

ω 2
lmj G jω 0

ω 1 ω 4 ω
−  = =  + +

 

2
pcω 2= rad/ sec 

So, plot crosses negative real axis at 
ω 2= rad/sec. 
Therefore option (a) is correct. 

Q.19 (a) 
At gain across over frequency
( )gcω  , magnitude of ( )G jω  is 1.
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( )gcG jω 1=

Phase of ( ) ( )gcG jω G jω∠=
°150= −  

Phase margin ( )°
gc180 G jω∠= +

° ° °180 150 30= − =
At phase cross frequency ( )pcω , 

Phase of ( )G jω  is

( )° °
pc180 , G jω 180∠− = −

M = magnitude of ( )G jω at

( ) ( )pc pcω G jω 0.5= =

Gain margin 120log
M

120log 6dB
0.5

= =

Q.20 (c) 
For sinusoidal excitation 
s jω=  

( )G jω∴

( )( )
( ) ( ) ( )

2ω 9 jω 2
jω 1 jω 3 jω 4

− + +
=

+ + +
For zero steady –state output 

( )G jω 0=

( )
( ) ( ) ( )

2 2

2 2 2

w 9 w 4

w 1 w 9 w 16

− + +
=

+ + +

For zero steady-state output 
⇒ nω 9=
⇒ ω 3rad / sec=

Q.21 (b) 

ω 1 to ω 10= =  
Is 1 dec are change & change is (G) 
is 40 dB 

S lope is 40dB / dec∴  
There are 2poles is orign∴

So, ( ) 2

KG s
S

=

( )atω 1G 32dB given
=
=

2
ω 1

k2log 32dB
ω =

⇒ =  

20log k 32dB k 39.8⇒ = ⇒ =

2

39.8G
S

∴ =

Q.22 (a) 

( ) ( ) 2

5(s 4)G s
s s 0.25 (s 4s 25)

+
=

+ + +
If we convert it into time constants, 

( ) 2

s5×4 1+
4G s =

s 4 ss[0.25] 1+ 25 1+ .s+
0.25 25 5

 
  

    
         

( ) 2

s3.2 1+
4G s =

s 4 ss 1+ 1+ .s+
0.25 25 5

 
  
  
     

Constant gain term is 3.2 
nω 5= →highest corner frequency 

Q.23 (c) 

( ) (1 3s)G s k.
(1 s)
+

=
+

 ( )

13k. s
3G s

(s 1)

 + 
 =
+

Here k=1 
1 1 1 1
T 3 αT
= ⇒ =  

1 1;α 33mω = =  

 1
3

4G(s) 3
4

3
ω=

= ⇒

m in  dB
G 20log 3 4.77dB= =  
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1
m

1 αΦ sin
1 α

− − =  + 

1 1
11 131 sin sin3 1 21 3

α − −
 −   = = =   +   

 

mΦ 30°=  

Q.24 (b) 

( ) ( )1 2
1G s ;G s
s

s= =  

( )1 2
1G G s 1s
s

= ⋅ =⋅

Q.25 (a) 
Phase Crossover frequency 

PCPC : GH 180ω=ωω = − °  
1 1

PCGH 3tan ω 180° 3tan W− −= − ⇒ = −

PCW tan 60° 3⇒ = =

Q.26 (a) 
By looking to the plot we can say 
that since the initial slope is +20 
there must be a zero on the origin  

If we find ω2we can get the answer 
by eliminating options  

2 1

2 1

M M
log log

Slope −
=

ω − ω

2

0 1240
log8 log ω

−
⇒ − =

−

2
12log8 log ω
40

⇒ − =

 2 2
12log log8 4
40

ω ω= − ⇒ =  

So one of the corner frequency is 
2 4sω =  at this frequency 2 poles 

should exist because the change in 
slope is -40db  
From this we can say option A 
satisfies the condition 
(i)  A zero at origin  
(ii) one of corner frequency 4H term 

will be s1
4

 
+ 

 
 having 2 poles 1 

Q.27 (a) 
S 3GH

S(S 3)
+

=
−

( )
( )

1/22

1/2 22 2

a 1GH
a

ω +
= =

ωω ω +

-1 -1ω ωGH= tan - 180°+180°-tan
3 3

   
      

1 ω2 tan
3

−=

¯
1

2

1GH 2 tan
3

− ω
→ =

ω
0,GAt 0Hω = = ∞  

0¯
,GH 0 1 0At 8ω = ∞ =

01At 3,GH 90
9

ω = =

So the plot start at 0°  and goes to 
180°  through 90° . Since there are 2 
poles on origin we will get 2 ∞ 
radius semicircle those will start 
where the mirror image ends and 
will terminate where the actual plot 
started in clockwise direction. So the 
plot will be  
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So the Nyquist plot of G(s) H(s) 
Encircles — 1 + j0  
Once in clockwise direction 
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Q.1 A unity feedback system has the 
following open loop frequency 
response: 

Ω|(rad 
/sec)| 

2 3 4 5 6 8 10 

|G(jω)| 7.5 4.8 3.15 2.25 1.70 1.00 0.64 
∠G(jω) 1180 1300 1400 1500 1570 1700 1800 

The gain and phase margin of the 
system are  
a) 0dB, 180− ° b) 3.88dB, 170− °
c) 0dB,10° d) 3.88dB,10°

[GATE-2006]
Common Data for Question Q.2 & Q.3:  
The following figure represents a 
proportional control scheme of a order 
system with transportation lag. 

Q.2  The angular frequency in radians/s 
at which the loop phase lag 
becomes180° is 
a)0.408 b)0.818 
c)1.56  d)2.03 

[GATE-2007] 
Q.3  The steady state error for a unit step 

input when the gain cK 1=  is  

a) 1
4

b) 1
2

c) 1 d) 2
[GATE-2007] 

Q.4 The Bode asymptotic plot of a 
transfer function is given below, in  
the frequency range shown, the 
transfer function has 

a)3 pole and 1 zero 
b)1 pole and 2 zeros 
c)2 poles and 1 zero   
d)2 poles and 2 zeros 

           [GATE-2008] 

Q.5 A unity feedback control loop with 
an open transfer function of the 

form 
K

s(s a)+
 has a gain crossover

frequency of 1 rad/s and a phase 
margin of  60°  if an element having 

a transfer function s- 3
s+ 3

 is inserted

into the loop, the phase margin will 
become 
a) 0° b) 30°
c) 45° d) 60°

           [GATE-2009] 

Q.6 The asymptotic Bode magnitude 
plot of a lead network with its pole 
and zero on the left half of the s-
plane is shown in the adjoining 
figure. The frequency at which the 
phase angle of the network is 
maximum (in rad/ s) is  

GATE QUESTIONS(IN) 
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a) 
3
10

b) 
1
20

c) 1
20

d) 1
30

           [GATE-2010] 

Common data for question Q.7 & Q.8: 
The open-loop transfer function of a unity 
negative feedback control system is given 

by ( ) 3

k
(s )

G s
5

=
+

Q.7 The value of K for the phase margin 
of the system to be 45° is 
a) 250 5 b) 250 2
c) 125 5 d) 125 2

           [GATE-2011] 

Q.8 The value of K for the damping ratio 
ζ to be 0.5, corresponding to the 
dominant closed loop complex 
conjugate pole pair is  
a) 250 b) 125
c) 75 d) 50

           [GATE-2011] 

Q.9 The open loop transfer function of a 
unity negative feedback control 
system is given by 

( ) ( )
150s =

s s+9 (s+25)
 . The gain margin 

of the system is 
a)10.8dB b)22.3 dB 
c)34.1 dB d)45. 6 dB 

           [GATE-2012] 

Q.10 The loop transfer function of a 
feedback control system is given by 

( ) ( ) ( )
1

s s 1
G s H  

(9
s

s 1)+
=

+
Its phase 

crossover frequency (in rad/s), 
approximated to two decimal places, 
is_________. 

[GATE-2014] 

Q.11 The approximate phase response of 
2 0.01

2 2

100
0.2 100

se
s s

−

+ +
is 

a) 

b) 

c) 

d) 

[GATE-2018] 
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Q.12 An input p(t) = sin(t) is applied to 

the system 1( )
1

sG s
s
−

=
+

. The 

corresponding steady state output is 
y(t) = sin( )t φ+ , where the phase φ  
(in degrees), when restricted to 

0 00 360φ≤ ≤ , is _______________. 

[GATE-2018] 

Q.13 Consider the transfer function
2( )

( 1)( 2)
G s

s s
=

+ +
. The phase 

margin of G(s) in degree is 
____________. 

[GATE-2018] 

 
 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 
(d) (d) (b) (c) (a) (b) (b) (b) (c) 0.33 (a) 90 180 

ANSWER  KEY: 
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Q.1 (d) 
gΩ 8 PM 180° 170° 10°= ⇒ ⇒ − =  

c
10radΩ GM

sec
= ⇒

10
120log 3.88dB

0.4
 = = 
 

Q.2 (d) 

( ) ( )
s jω

c cK e K eGH s ,GH jω
s 1 1 jω

− −

= =
+ +

( ) 1GH jω ω tan (ω)∠ −= − −  
Phase lag ( )1ω tan ω π rad−= + =

3.142rad=  
Is satisfied only at 
ω 2.03rad / sec=  

Q.3 (b) 
For cK 1=  and ( )H s 1=  

OLTF=G(s)=  
se

s 1

−

+
For r(t)=R.u(t),R=1 
Positional error constant = 

( )p s 0 s 0
K Lt Lt G s 1

→ →
= =  

ss
p

R 1e
1 K 2

= =
+

or 

s
c

E(s) 1 s 1
R(s) 1 G(s) s 1 K e−

+
= =

+ + +

( ) s

(s 1)E s
s(s 1 e )−

+
=

+ +

( )ss s 0 s 0

1e Lt Lt E s
2→ →

= =

Q.4 (c) 
Compare with Bode magnitude plot 
of standard transfer function.  

Q.5 (a) 
PM of   ( )T s 60°=  

1 ω180 90° tan
a

−  = + − −     
a 3⇒ =

PM of  ' s 3 kT (s) .
s(s σ)s 3

−
=

++
( ) ( )' '

ω 1T s 180° T jω 0°∠
=

= + =

Q.6  (b) 

m 1 2
1ω ω ω 0.1 0.5
20

= = × =

Q.7 (b) 

PM of 1 ω45° 180° 3tan
5

−  = − = 
 

1

5
ω45° tan 1 ω 5rad / sec−  ⇒ = ⇒ = 

 

( )
( )3/22 2

KG Jω 1 1 K
ω 5

∴ = ⇒ = ⇒
+

250 2=

Q.8 (b) 

Q.9 (c) 
G.M is evaluated using 𝜔𝜔𝑃𝑃𝑃𝑃 

( )190 tan 9
ωφ −= −

( )1
pc

ωtan 180°[ ω ω ]25
− = =Q  

    A     B 

( ) ( )1 1ω ωtan tan9 25
− −⇒ +

90°= Taking tan on both sides  

( ) tanA tanBtan A B
1 tanA tanB

+
+ =

−
tan 90° ∞=  

1 tanA tan B 0⇒ − =

EXPLANATIONS 
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2ω 225⇒ =
tanA tanB 0⇒ =
ω 15r / s⇒ =

QG
15 225 81 225 625

∆
=

+ +
1G.M in dB 20log 34dB
4
 ⇒ = =  

Q.10 (0.33) 

Given ( ) ( ) ( )
1

s s
G s H s

1 (9s 1)+ +
=

Phase cross over frequency 
PC pc pc

W G(jω )H G(jω )=-180°⇒  

PCW G(jω)H(jω)=-180°⇒  

( ) ( )-1 -1-90°-tan ω -ta =- n 9ω 180°

( ) ( )-1 -1tan ω +tan 9ω =90°⇒

-1
2

ω+9ωtan =90°
1-9ω
 ⇒   
2 11-9ω =0 ω=

3
⇒ ⇒

ω=0.33r/s  

Q.11 (a) 

4 0.01

2 2

4 0.01

2 4

1
4 2

0

2

0 0 0

10( )
0.2 100

10( )
0.2 10

0.2( ) 0.01 tan
10

0; ( ) 0; 10; ( ) 5.8
20100; ( ) 1 tan
0

180 90 57.3 90 147.3

200

( )

s

j

eG s
s s

Put s j
eG j

j

G j

G j G j

G j

G j

ω

ω

ω
ω ω

ωω ω
ω

ω ω ω ω

ω ω

π
ω

ω

−

−

−

−

=
+ +

=

=
− + +

 ∠ = − −  − 
= ∠ = = ∠ = −

 = ∠ = − −  
 

=− − = − − = −

=

−
∠ =

0
1

4

360 40tan
3 10π

−  −  − × 

So, Phase decrease further. Option 
(a) satisfy. 

Q.12 90 

1

1 1

1

0 0 0
1

1
0

0

1( ) ...(1)
1

( ) ( ) sin( )
1( )
1

( ) 180 tan ( ) tan ( )
180 2 tan ( )

( ) 180 90 90

( ) 1

, ( ) 1 sin( 90 )
90

sG s
s

y t G j t
jwhere G j
j

G j

G j

G j

So y t t

ω

ω

ω

ω φ
ωφ ω
ω

ω ω ω

ω

φ ω

ω

φ

=

− −

−

=

=

−
=

+
= +

−
= ∠ =

+

∠ = − −

= −

= ∠ = − =

=

= ⋅ +

=

Q.13 180 

2 2

2 2

2 2

1 1 0

0

2( ) 1
1 4

( 1)( 4) 4

5 0

0 / sec

( ) tan ( ) tan 0
2

. . 180

gc

gc gc

gc

G j

rad

P G j

P M

ω
ω ω

ω ω ω ω

ω ω

ω

ωω ω− −

= =
+ +

+ + = ∴ =

 + = 
∴ =

 ∠ = − − = 
 

=
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6.1 INTRODUCTION 

State space analysis is an excellent method 
for the design and analysis of control 
systems. The conventional and old method 
for the design and analysis of control 
systems is the transfer function method. 
The transfer function method for design 
and analysis had many drawbacks. 

6.1.1 DRAWBACKS OF TRANSFER 
FUNCTION ANALYSIS 

• Transfer function is defined under zero
initial conditions.

• Transfer function approach can be
applied only to linear time invariant
systems.

• It does not give any idea about the
internal state of the system.

• It cannot be applied to multiple input
multiple output systems.

• It is comparatively difficult to perform
transfer function analysis on computers.

Any way state variable analysis can be 
performed on any type systems and it is 
very easy to perform state variable analysis 
on computers. The most interesting feature 
of state space analysis is that the state 
variable we choose for describing the 
system need not be physical quantities 
related to the system. Variables that are not 
related to the physical quantities 
associated with the system can be also 
selected as the state variables. Even 
variables that are immeasurable or 
unobservable can be selected as state 
variables. 

6.1.2 ADVANTAGES OF STATE VARIABLE 
ANALYSIS 

• It can be applied to non linear system.

• It can be applied to time invariant
systems.

• It can be applied to multiple input
multiple output systems.

• Its gives idea about the internal state of
the system.

6.2 STATE OF A SYSTEM 

The state of a system is the minimum set of 
variables (state variables) whose 
knowledge at time 0t t= , along with the 
knowledge of the inputs at time 0t t≥
completely describes the behavior of a 
dynamic system for a time 0t t≥ . State 
variable is a set of variables which fully 
describes a dynamic system at a given 
instant of time. 
Consider a system having an inputs, b 
outputs and c state variables. Then,  
Output variables 

( ) ( ) ( )1 2 3 bY t ,Y t ,Y t Y  (t)= …………
Input variables 

1 2 3 aU (t), U (t), U (t) U (t)= …………
State variables  

1 2 3 cX (t),X (t),X (t) X (t)= …………  
Then the system can be represented as 
shown below. 

6.2.1 STATE EQUATION BASED MODELING 
PROCEDURE 

The complete system model for a linear 
time-invariant system consists of  
1) A set of n state equations, defined in

terms of the matrices A and B.

6 STATE VARIABLE ANALYSIS
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2) A set of output equations that relate any
output variables of interest to the state
variables and inputs, and expressed in
terms of the C and D matrices.
The task of modeling the system is to
derive the elements of the matrices, and
to write the system model in the form:

'x Ax Bu= +

11 12 1n
1 1

21 22 2n
2 2

n1 n2 nn
n n

a a a
x x

a a aD x x
dt

a a a
x x

   
…    

    …    =
    
    …       

M M M
M M

11 1r
1

21 2r

r
n1 n2 nr

b b
u

b b

u
b b b

… 
  …   +   
    

 

M
M M M

y Cx Du= +

11 12 1n
1 1

21 22 2n
2 2

m1 m2 mn
n n

c c c
y x

c c c
y x

c a a
y x

   
…    

    …    =
    
    …       

M M M
M M

11 1r
1

21 2r

r
m1 m2 mr

d d
u

d d

u
d d d

… 
  …   +   
    

 

M
M M M

The matrices A and B are properties of the 
system and are determined by the system 
structure and elements. The output 
equation matrices C and D are determined 
by the particular choice of output variables. 
The overall modeling procedure developed 
in this chapter is based on the following 
steps: 
1) Determination of the system order n

and selection of a set of state variables
from the linear graph system
representation.

2) Generation of a set of state equations
and the system A and B matrices using a
well defined methodology. This step is

also based on the linear graph system 
description. 

3) Determination of a suitable set of
output equations and derivation of the
appropriate C and D matrices.

6.2.2 BLOCK DIAGRAM REPRESENTATION 
OF LINEAR SYSTEMS DESCRIBED BY 
STATE EQUATIONS 

The matrix-based state equations express 
the derivatives of the state-variables 
explicitly in terms of the states themselves 
and the inputs. In this form, the state vector 
is expressed as the direct result of vector 
integration. The block dia. representation is 
shown in Fig. This general block diagram 
shows the matrix operations from input to 
output in terms of the A, B, C, D matrices, 
but does not show the path of individual 
variables. 
• Step 1: Draw an integrator 1(s )−  blocks,

and assigns a state variable to the
output of each block.

• Step 2: At the input to each block
(which represents the derivative of its
state variable) draw a summing
element.

• Step 3: Use the state equations to
connect the state variables and inputs
to the summing elements through
scaling operator blocks.

• Step 4: Expand the output equations
and sum the state variables and inputs
through a set of scaling operators to
form the components of the output.

Example 
Find the transfer function relating the 
output y(t) to the input u(t) for a system 
described by the first-order linear state and 
output equations: 
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( ) ( )dx ax t bu t
dt

= +

y(t) cx(t) du(t)= +

Solution:  
The Laplace transform of the state equation 
is sX(s) aX(s) bU(s)= +  
Which may be rewritten with the state 
variable X(s) on the left-hand side: 
(s a)X(s) bU(s)− =  
Then dividing by (s−a), solve for the state 
variable: 

( ) bX s U(s)
s a

=
−

and substitute into the 

Laplace transform of the output equation 
Y(s) cX(s) dU(s)= + : 

bcY(s) d U(s)
s a
 = + − 
( )ds bc ad

U(s)
s a

+ −
=

−
The transfer function is: 

( ) ( )
( )

( )( )ds bc adY s
H s

U s (s a)
+ −

= =
−

6.3 STATE MODEL FROM TRANSFER 
FUNCTION 

Consider a transfer 
( )
( )

2

3 2

Y s s 3s 3T(s)
U S s 2s 3s 1

+ +
= =

+ + +
1) Write the transfer function in the form

( ) ( )
( )

( )
( )

2

3 2

Y s X s s 3s 3 1T s . .
X s U s 1 s 2s 3s 1

+ +
= =

+ + +

2) 
3 2

X(s) 1 =
U(S) s +2s +3s+1

( ) ( ) ( ) ( ) ( )3 2s X s 2s X s 3sX s X s U s⇒ + + + =
From the above equation we can write 
the differential equation as 

( )
3 2

3 2

d x(t) d x(t) dx(t)2 3 x t u(t)
dt dt dt

+ + + =

Put ( ) 1x t x=

'
2 1

dx(t) x x
dt

= =

2
'

3 22

d x(t) x x
dt

= =

3
'

4 33

d x(t) x x
dt

= =

Now, x1′ = x2 
'
2 3x x=

and '
3 3 2 1x 2x 3x x u(t)= − − − +

1 1

2 2

3 3

x 0 1 0 x 0
d x 0 0 1 x 0 u(t)
dt

x 1 3 2 x 1

       
       = +       
       − − −       

 

0 1 0 0
A 0 0 1 B 0

1 3 2 1

   
   = =   
   − − −   

 

3) 
2Y(s) s +3s+3=

X(s) 1
⇒ ( ) ( ) ( ) ( )2Y s s X s 3sX s 3X s= + +
From the above equation we can write 
the differential equation as 

( )
2

2

d x(t) dx(t)Y(t) 3 3x t
dt dt

= + +

Put ( ) 1x t x=

2
dx(t) x

dt
=

2

32

d x(t) x
dt

=

[ ] [ ]
1

2

3

x
Y 3 3 1 x 0 u(t)

x

 
 = + 
  

 

[ ]C 3 3 1=

[ ]D 0=

6.4 TRANSFER FUNCTION FROM STATE 
MODEL 

Consider a state model derived for linear 
time invariant system as, 
( )'x t Ax(t) Bu(t)= + and

y(t) Cx(t) Du(t)= +  
The transfer function of the above state 
model is, 
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( )
( )

1Y s
T(s) C[sI A] B D

U s
−= = − +  

Where I is an Identity matrix 

Example: 
Consider a system having state model 

'
11

'
22

x2 3 3x
u

x4 2 5x
− −      

= +      
     

 & 

[ ] 1

2

x
Y 1 1

x
 

=  
 

Solution: 
We know that, 

1T.F. C[sI A] B D−= − +
2 3

A
4 2
− − 

=  
 

, 
3

B
5
 

=  
 

, [ ]C 1 1=

[ ] 1 0
sI A s

0 1
2 3

4 2
   

− = −   
  

−



−
 

s+2 +3
=

-4 s-2
 
 
 

[ ]-1 2

s-2 -3
+4 s+2

sI-A =
s +8

 
 
 

∴ [ ] 2

s 2 3
34 s 2

T.F. 1 1
5s 8

− − 
 + +   =  +  

[ ]
2 2

3
s-2+4 -3+s+2

5 8s+1= =
s +8 s +8

 
 
 

6.5 SOLUTION OF STATE EQUATION 

Consider a constant matrix A & input 
control forces are zero, then the state 
equation will be ( )'x t Ax(t)=

Such an equation is called as homogeneous 
equation & its solution is given by 
( ) Atx t e x(0)=

Where Ate (t)=∅ is called as state 
transition matrix & 

( )At 1 1e t [sI A]− −= ∅ = −

Properties of state transition matrix: 
1) ( ) A 0t e I(identity matrix)×∅ = =

2) ( ) ( )1 t t−∅ =∅ −

3) ( ) ( ) ( )1
1 2 1 2t t t t−∅ + =∅ ×∅

Example: 
Find state transition matrix for

0 1
A

2 3
− 

=  − 

Solution: 
0 1

A
2 3

− 
=  − 

[ ] 1 0 0 1
sI A s

0 1 2 3
−   

− = −   −   
s 1
2 s 3

+ 
=  − + 

∴[ ] ( )( )
1

s 3 1
2 s

sI A
s 1 s 2

−

+ − 
 + − =
+ +

( )( ) ( )( )

( )( ) ( )( )

s 3 1
s 1 s 2 s 1 s 2

2 s
s 1 s 2 s 1 s 2

+ − 
 + + + + =
 +
 + + + + 

We know that, ( )At 1 1e t [sI A]− −= ∅ = −

( )
t 2t t 2t

t 2t t 2t

2e e e e
t

2e 2e e 2e

− − − −

− − − −

 − − +
∴∅ =  − − + 

6.6 CONTROLLABILITY 

A system is said to be controllable at time 
t0 if it is possible by means of an 
unconstrained control vector to transfer 
the system from any initial state to any 
other state in a finite interval of time.  
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Kalman’s test for Controllability: 

Consider a LTI system with state equation 

( )'x t Ax(t) Bu(t)= + . For this state
equation a Qcis defined as 

2 n 1
c n n

Q B AB A B A B−

×
 = … 

The system will be completely controllable 
if the rank of matrix cQ is ‘n’ i.e. c| Q | 0≠ . 
6.7 OBSERVABILITY 

A system is said to be observable at time t0 
if, with the system in state 0x(t ) , it is 
possible to determine this state from the 
observation of the output over a finite 
interval of time. 

Kalman’s test for Observability: 

Consider a LTI system with state equation
( )'x t Ax(t) Bu(t)= + . For this state

equation a Qois defined as 
T T T T 2 T T n 1 T

o n n
Q C A C (A ) C    (A )    C−

×
 = … 

The system will be completely observable if 
the rank of matrix oQ is ‘n’ i.e. o| Q | 0≠ . 

Example: 
Check the controllability & observabilty of 
the system 

'
11

'
22

x1 1 0x
u(t)

x2 1 1x
      

= +      − −     
and 

[ ] 1

2

x
y(t) 1 0

x
 

=  
 

 

Solution: 
For the given system 

1 1
A

2 1
 

=  − − 
, 

0
B

1
 

=  
 

, [ ]C 1 0=

[ ]c

0 1
Q B AB

1 1
 

= =  − 

cQ 0 1 1= − = −  
0 hence the system is control lable≠

Now, T T T
o

1 1
Q C A C

0 1
  = =     

oQ 1 0 1= − =  
0;  hence the system is observable≠  

6.8 STABILITY OF THE SYSTEM 

The transfer function of a system can be 
obtained from the state equations as 

( )
( )

1Y s
T(s) C[sI A] B D

U s
−= = − +  

[ ]
[ ]

C Adj sI A B
D

det sI A
× − ×

= +
−

 

[ ]
[ ]

1 Adj sI A
[sI A]

det sI A
− −

− =
−

Q

[ ] [ ]
[ ]

C Adj sI A B D det sI A
det sI A

× − × + × −
=

−
As the denominator of the transfer function 
is [ ]det sI A− , the characteristics equation

will be sI A 0− =  
The roots of this characteristics equation 
will be the closed loop poles of the system 
& if any root is positive (on RHS of s-plane) 
system will be unstable. 

Example:  
Determine the stability of system
x’ Ax Bu= +

1 2
A

0 2
− 

=  
 

, 
0

B
1
 

=  
 

Solution: 

[ ] 1 0 1
sI A s —

0 1 0
2
2

−   
− =    

   
 

s 1 2
0 s 2
+ − 

=  − 
The characteristics equation is 

( )( )sI A s 1 s 2 0− = + − =
The roots of the characteristics equation 
are s 2 & s 1= = −  
As on root (s = 2) lies on RHS of s-plane, 
system is unstable. 
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Example:  
Find out state model of the following 

system. 
3 2

3 2

d y d y dy2 3 y u
dt dt dt

+ + + =

Solution:  
The above equation can be written as 

( ) ( ) ( ) ( )3 2s Y s 2s Y s 3sY s Y s U(s)+ + + =
The transfer function will be 

( )
( ) 3 2

Y s 1T(s)
U S s 2s 3s 1

= =
+ + +

It can also be written as 

( ) ( )
( )

( )
( )

Y s X s
T s .

X s U s
= = 1. 3 2

1
s 2s 3s 1+ + +

( )
( ) 3 2

X s 1
U s s 2s 3s 1

=
+ + +

( ) ( ) ( ) ( ) ( )3 2  s X s 2s X s 3sX s X s U s∴ + + + =

i.e. 
3 2

3 2

d x d x dx2 3 x u
dt dt dt

+ + + =

put 1x x=

'
2 1

dx x x
dt

= =

2
'

3 22

d x x x
dt

= =

3
'

4 33

d x x x
dt

= =

Now, '
1 2x x=

'
2 3x x=
'
3 4 1 2 3x x x 3x 2x u= = − − − +

∴ 

'
1 1
'
2 2
'
3 3

x 0 1 0 x 0
x 0 0 1 x 0 u
x 1 3 2 x 1

       
       = +       
       − − −      
( )
( )

Y s
1 y(t) x(t)

X s
= ⇒ =

[ ] [ ]
1

2

3

  1 0 0 0
 
 ∴ = + 
  

x
y x u

x
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Q.1 The transfer function Y(s)/U(s) of a 
system described by the state 
equations  
( ) ( ) ( ) ( )x t 2x t 2u t  and y t 0.5x(t)= − + =

is  
a) 0.5 / (s 2)− b) 1/ (s 2)−

c) 0.5
s 2+

d) 1
s 2+

          [GATE-2002] 

Q.2 The zero-input response of a system 
given by the state –space equations 

1 1

2 2

x x1 0
x x1 1
    

=    
    





( )1

2

1x 0
and

0x (0)
   

=   
  

is 

a) 
tte

t
 
 
 

b) 
te
t

 
 
 

c) 
t

t

e
te
 
 
 

d) t

t
te
 
 
 

[GATE-2003] 

Q.3 The state variable equations of a 
system are: 
1) 2 1 2x 3x x u= − − + , 
2) 2 1 1x 2x y x u= = +

The system is 
a) controllable but not observable
b) observable but not controllable
c) neither controllable not 

observable
d) controllable and observable

[GATE-2004] 

Q.4 Given, 
1 0
0 1
 

=  
 

A  the state 

transition matrix Ate  is given by 

a) 
t

t

0 e
e 0

−

−

 
 
 

b) 
t

t

e 0
0 e

 
 
 

c) 
t

t

e 0
0 e

−

−

 
 
 

d) 
t

t

0 e
e 0
 
 
 

 

[GATE-2004] 

Q.5 A linear system is equivalently 
represented by two sets of state 
equations. X=AX+BU and W=CW+DU 
The eigen values of the 
representations are also computed 
as [λ] and [μ] Which one of the 
following statements is true? 
a) [λ]=[μ] and X=W
b) [λ]=[μ] and X≠W
c) [λ]≠[μ] and X=W
d) [λ]≠[μ] and X≠W

[GATE-2005] 

Q.6 A linear system is described by the 
following state equation 

( ) ( ) ( )
0 1

X t AX t BU t , A
1 0

 
= + =  − 



The state –transition matrix of the 
system is  

a) 
cos t sin t
sin t cos t

 
 − 

  

b) 
cos t sin t
sin t cos t

− 
 − − 

 

c) 
– cos t sin t

sin t cos t
− 

 − 

d) 
cos t sin t
cos t sin t

− 
 
 

 

         [GATE-2006] 

Q.7 The state space representation of a 
separately excited DC servo motor 
dynamics is given as  

a a

d
1 1 0dt udi 1 10 10i

dt

ω 
  −     ω

= +      − −     
 

GATE QUESTIONS(EC) 
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Where, ω is the speed of the motor, 
ia is the armature current and u is 
the armature voltage. The transfer 

function (s)
U(s)
ω   of the motor is 

a) 2

10
s 11s 11+ +

b) 2

1
s 11s 11+ +

c) 2

10s 10
s 11s 11

+
+ +

d) 2

1
s s 1+ +

[GATE-2007] 

Statement for Linked Answer Questions 
Q.8 & Q.9: 
Consider a linear system whose state space 
representation is ( ) ( )x t Ax t .=  . If the 
initial state vector of the system is 

( )
1

0
2

 
=  − 

, then the system response is

( )
2t

2t

e
x t

2e

−

−

 
=  − 

. If the initial state vector of 

the system changes to ( )
1

x 0
1

 
=  − 

then the 

system response becomes  ( )
t

t

e
x t

e

−

−

 
=  − 

Q.8 The Eigen-value and Eigen-vector 
pairs ( )i i, vλ for the system are 

a) 
1 1

1, and 2,
1 2

      
− −      

      

b) 
1 1

2, and 1,
1 2

      
− −      − −      

c) 
1 1

1, and 2,
1 2

      
− −      − −      

d) 
1 1

2, and 1,
1 2

      
−      − −      

[GATE-2007] 

Q.9 The system matrix A is 

a) 
0 1
1 1

 
 − 

b) 
1 1
1 2

 
 − − 

c) 
1 1
1 2

 
 − − 

d) 
0 1
2 3

 
 − − 

          [GATE-2007] 

Q.10 A signal flow graph of a system is 
given  below. 

The set of equations that 
correspond to this signal flow graph 
is  

a) 
1 1

1
2 2

2
3 3

x β -γ 0 x 1 0
ud x = γ α 0 x + 0 0
udt

x -α -β 0 x 0 1

       
       
                      

 

b) 
1 1

1
2 2

2
3 3

x 0 α γ x 0 0
ud x = 0 -α -γ x + 0 1
udt

x 0 β -β x 1 0

       
       
                      

 

c) 
1 1

1
2 2

2
3 3

x -α β 0 x 1 0
ud x = -β -γ 0 x + 0 1
udt

x α γ 0 x 0 0

       
       
                      

d) 
1 1

1
2 2

2
3 3

x -γ 0 β x 0 1
ud x = γ 0 α x + 0 0
udt

x -β 0 -α x 1 0

       
       
                      

 

     [GATE-2008] 

Q.11 Consider the system 
1 0 pdx Ax BuwithA andB
0 1 qdt
   

= + = =   
   

where p and q are arbitrary real 
numbers. Which of the following 
statements about controllability of 
the system is true? 
a) The system is completely state

controllable for any nonzero
values of p and q.

b) Only P=0 and q=0 result in
controllability.
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c) The system is uncontrollable for
all values of p and q.

d) We cannot conclude about
controllability from the given
data

[GATE-2009] 

Common Data for Questions Q.12 & 
Q.13: 
The signal flow graph of a system is shown 
below: 

Q.12 The state variable representation of 
the system can be 

a) 
1 1 0

x = x + u
-1 0 2
   
   
   



b) 
-1 1 0

x = x + u
-1 0 2
   
   
   



[ ]y = 0     0.5 x

[ ]y = 0     0.5 x

c) 
1 1 0

x = x + u
-1 0 2
   
   
   



d) 
-1 1 0

x = x + u
-1 0 2
   
   
   



[ ]y = 0.5    0.5 x

[ ]y = 0.5    0.5 x
          [GATE-2010] 

Q.13 The transfer function of the system is  

a) 2

s+1
s +1

  b) 2

s 1
s 1
−
+

c) 2

s+1
s +s+1

d) 2

s-1
s +s+1

           [GATE-2010] 

Q.14 The block diagram of a system with 
one input u and two outputs 1y  and 

2y  is given below. 

A state space model of the above 
system in terms of the state vector x 
and the output vector  [ ]1 2= Ty y y   is
a) [ ] [ ] [ ]x = 2 x+ 1 u;   y = 12 x

b) [ ] [ ] 1x= -2 x+ 1 u;     y= x
2
 
  



c) [ ]-2 0 1
x= x+ u;y= 12 x

0 -2 1
   
   
   



d) 
2 0 1 1x= x+ u;y= x
0 2 2 2
     
         



          [GATE-2011] 

Q.15 The state variable description of an 
LTI system is given by 

1 1 1

2 2 2

3 3 3

X 0 a 0 X 0
X 0 0 a X 0 u
X a 0 0 X 1

      
      = +      

           







 

( )
1

2

3

X
y 1 0 0 X

X

 
 =  
 
 

Where y is the output and u is the 
input. The system is controllable for 
a) 1 2 3a 0, a  0, a 0≠ ≠ ≠  
b) 1 2 3a = 0, a 0, a 0≠ ≠  
c) 1 2 3a = 0, a 0, a 0≠ =
d) 1 2 3a 0, a 0, a 0≠ ≠ =  

[GATE-2012] 

Statement for Linked Answer Questions 
16 & 17 
The state diagram of a system is shown 
below is described by the state –variable 
equations: 
X AX Bu; y CX Du= + = +
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Q.16 The state-variable equations of the 
system in the figure above are 

a) 
1 0 1

X X u
1 1 1
− −   

= +   −   


b) 
1 0 1

X X u
1 1 1
− −   

= +   − −   


[ ]y 1 1 X u= − +

[ ]y 1 1 X u= − − +

c) 
1 0 1

X X u
1 1 1
− −   

= +   − −   


d) 
1 1 1

X X u
0 1 1
− − −   

= +   −   


[ ]y 1 1 X u= − − −

[ ]y 1 1 X u= − −

[GATE-2013] 

Q.17 The state transition matrix eAt of the 
system shown in figure above is 

a) 
-t

-t -t

e 0
te e
 
 
 

b)
-t

-t -t

e 0
-te e
 
 
 

 

c) 
-t

-t -t

e 0
e e
 
 
 

 d)
-t -t

-t

e -te
0 e

 
 
 

  

[GATE-2013] 

Q.18 Consider the state space model 
system, as given below 

1
1

2 2

3
3

x 1 1 0 x 0
x 0 1 0 x 4 u;

0 0 2 x 0x

 
  −     
       = − +       
       −      
 







 

[ ]
1

2

3

x
y 111 x

x

 
 =  
  

The system is 
a) controllable and observable
b) uncontrollable and observable
c) uncontrollable and unobservable
d) controllable and unobservable

 [GATE-2014] 

Q.19 An unforced liner time invariant 
(LTI) system is represented by 

1 1

2
2

X X1 0
X0 2X

  −     =     −    





If the initial conditions are x1(0) = 1 
and x2(0) = -1, the solution of the 
state equation is  
a) x1(t) = ‒1, x2 (t) = 2
b) x1(t) = ‒e-t, x2(t)=2e-t

c) x1 (t)=e-t, x2 (t)= ‒e-2t

d) x1 (t) = ‒e-t, x2 (t) = —2e-t 

 [GATE-2014] 

Q.20 Consider the state space system 
expressed by the signal flow diagram 
shown in the figure.  

The corresponding system is 
a) always controllable
b) always observable
c) always stable
d) always unstable

[GATE-2014] 

Q.21 The state equation of a second-order 
linear system is given by

( ) ( ) 0Ax t  , xx(t) x0= =  
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For 0
1x ,
1

 =  − 
( )

t

t

e
Χ t

e

−

−

 
=  − 

and for 

0

0
x ,

1
 

=  
 

 ( )
t 2t

t 2t

e e
e 2e

x t
− −

− −

 
=  − + 

 , 

When 0
3x ,
5
 =   

x(t) is 

a)
t 2t

t 2t

8e 11e
8e 22e

− −

− −

 −
 
 

b)
t 2t

t 2t

11e 8e
11e 16e

− −

− −

 −
 − + 

c) 
t 2t

t 2t

3e 5e
3e 10e

− −

− −

 −
 − + 

d) 
t 2t

t 2t

5e 3e
5e 6e

− −

− −

 −
 − + 

[GATE-2014] 

Q.22 The state transition matrix ɸ(t) of a 

system  1 1

2 2

x x0 1
x x0 0
    

=    
    





a) 
t 1
1 0
 
 
 

b) 
1 0
t 1
 
 
 

c) 
0 1
1 t
 
 
 

d) 
1 t
0 1
 
 
 

 [GATE-2014] 

Q.23 A second-order linear time-
invariant system is described by the 
following state equations 

( ) ( ) ( )1 1x t 2d -
d

x u
t

t 3 t+ =

( ) ( ) ( )2 2x t-
t

ud x
d

t t+ =

where x1(t)and x2(t) are the two 
state variables and u(t) denotes the 
input. If the output c(t) = x1(t), then 
the system is  
a) controllable but not observable
b) observable but not controllable
c) both controllable and observable
d) neither controllable nor observable

 [GATE-2016] 

Q.24 The state equation and the output 
equation of a control system are 
given  below: 

4 1.5 2
x x u

4 0 0
− −   

= +   
   



[ ]y 1.5     0.625 x=
Then transfer function 
representation of the system is 

a) 2

3s 5
s 4s 6

+
+ +

b) 2

3s 1.875
s 4s 6
−
+ +

c) 2

4s 1.5
s 4s 6

+
+ +

d) 2

6s 5
s 4s 6

+
+ +

[GATE-2018] 

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
(d) (c) (d) (b) (b) (a) (a) (a) (d) (d) (c) (b) (c) (b) (d) 
16 17 18 19 20 21 22 23 24 
(a) (a) (b) (c) (a) (b) (d) (a)  (a) 

ANSWER  KEY: 
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Q.1 (d) 
( ) ( ) ( )x t 2x t 2u t = − + …(i) 
( )y t 0.5x(t)=  …(ii) 

From (i), Taking Laplace transform 
of (i)  

( ) ( )sX s 2X s 2U(s)= − +  
X(s)[s+2]=2U(s) 

( ) 2U(s)X s
(s 2)

⇒ =
+

Taking Laplace transform of (ii) 
( )Y s 0.5X(s)=  

( ) 0.5 2U(s)Y s
s 2
×

=
+

( )Y s 1
U(s) (s 2)

∴ =
+

Q.2 (c) 

( )
s 0 1 0

sl A
0 s 1 1
   

− = −   
   

s 1 0
1 s 1
− 

=  − − 

( )
( )

1
2

s 1 0
1 s 1

sl A
s 1

−

− 
 + − − =

−

( )2

1 0
s 1

1 1
s 1s 1

 
 − = + 
 −− 

[ ]
t

11 At
t t

e 0
L sl A e

te e
−−  

− = =  
 

( ) ( )At
ox t e x t =  

t t

t t t

1e 0 e
0te e te

    
= =    

    

Q.3 (d) 
1 1

2 2

x x3 1 1
u

x x2 0 0




− −      
= +      
      

[ ] 1

2

x 1
y 10 u

x 0
   

= +   
  

cQ [B AB]=  
3

AB
2
− 

=  
 

c

1 3
Q 0

0 2
− 

∴ = ≠ 
 

 

Controllable∴  
T T T

0Q C A C =  

T T1 3 2
C ,A

0 1 0
−   

= =   −   

T T 3
A C

1
− 

=  − 

0

1 3
Q 0

0 1
− 

∴ = ≠ − 
 

observable∴  

Q.4 (b) 

[ ] s 0 1 0
sl A

0 s 0 1
   

− = −   
   

[ ] s 1 0
sl A

0 s 1
− 

− =  − 

[ ] 1Ate sl A −= −

t

t

1 0 e 0s 1
1 0 e0

s 1

 
   −= =   
   
 − 

Q.5 (b)  
Eigen values of  A [λ]=  
Eigen values of [ ]W μ=

EXPLANATIONS 
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The eigen value of a system are 
always unique  
So, [ ] [ ]λ μ=
But a system can be represented by 
different state models having 
different set of variables. 
X=W 
X≠W  
Both are possible conditions. 

Q.6 (a) 
( ) 1 1Φ t L [sl A]− −= −  

1

1 s 0 0 1
L

0 s 1 0

−

−     
= −    −    

1
1 s 1

L
1 s

−

− − 
=  

 

2 2
1

2

2 2

s 1
Ds 1 s 1L

1 s s 1
s 1 s 1

−

 
   + +=    − = +  
 + + 

cos t sin t
sin t cos t

 
=  − 

Q.7 (a) 

a a

dω
1 1 0ωdt udi 1 10 10i

dt

 
  −     

= +      − −     
 

a
dω ω i
dt

⇒ = − + …(i) 

a
a

di ω 10i 10u
dt

⇒ = − − +  …(ii) 

Taking Laplace transform (i) &(ii) 
( ) ( ) asω s ω s I (s)⇒ = − +

( ) ( ) as 1 ω s I (s)⇒ + = …(iii) 
( ) ( ) ( )a asI s ω s 10I s 10U(s)⇒ = − − +

( ) ( ) ( )aω s 10 s I s 10U(s)⇒ = − − +

( ) ( ) ( )10 s s 1 ω s 10U(s)= − − + +  

( )2s 11s 10 ω s 10U(s) = − + + + 
( )2[s 11s 11]ω s 10U(s)⇒ + + +  

( )
( )2

ω s 10
U(s) s 11s 11

⇒ =
+ +

Q.8 (a) 
Sum of the Eigen value =Trace of the 
principle diagonal matrix  
Sum 3.= −  Only potion (a) satisfies 
both conditions. 

Q.9 (d) 
Multiplication of the eigen 
value=determinant of the matrix 
Therefore from options it seems 
determinant should be ±  2. Only 
option (d) satisfies as det=2 

Q.11 (c) 
1 0

A
0 1
 

=  
 
p

B
q
 

=  
 

For controllability condition is 
n 1

cQ [B,AB, .A B] 0−= … ≠  
1 0 p

AB
0 1 q
   

=    
   

p 0 p
0 q q
+   

= =   +   

So, c

p          p
Q 0

q          q
 

= = 
 

 

So, the system is uncontrollable for 
all values of p and q. 

Q.12 (b) 

Q.13 (c) 
Forward path gain, 

( )1 2

1 1 1p 2 0.5
s s s

   = =  
   

( )2
1 1p 2 (1) 0.5
s s

 = = 
 

1 1∆ =  

2 1∆ =  

2

1 11
s s

 ∆ = − − − 
 
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2

1 11
s s

= + +

Transfer function of the system, 
1 1 2 2P PY(s)

U(s)
+

=
∆ ∆

∆

2

2

2

1 1
s 1s s

1 1 s s 11
s s

+ +
= =

+ ++ +

Q.14 (b) 
1Y (s) 1

U(s) s 2
=

+
2Y (s) 2

U(s) s 2
=

+
( )1 1

1

Y s X (s) 1
X (s)U(s) s 2

=
+

( )2 2

2

Y s X (s) 2
X (s)U(s) s 2

=
+

1 1

1

X (s) Y (s)1 and 1
U(s) s 2 X (s)

= =
+

2 2X (s) Y (s)1 and 2
U(s) s 2 U(s)

= =
+

( ) ( )1 1sX s 2X s U(s)+ =  
And,  ( ) ( )1 1Y s X s=

( ) ( )2 2sX s 2X s U(s)+ =

And,  ( ) ( )2 2Y s 2X s=

( ) ( )1 2x t 2x t U(t) + =

And,  ( )1 1y t x (t)=  
( ) ( )2 2x t 2x t U(t) + =

And,  ( )2 2y t 2x (t)=
From Questions 

[ ] [ ]T 1
1 2

1
y y y 12

2
 

= = =  
 

( ) ( )1 1x t 2x t U(t) = − =  
( ) ( )2 2x t 2x t U(t) = − +

1 1

2 2

x x2 0 1
u(t)

x x2 0 1




−      
= +      −      

 

Or [ ] [ ]x 2 x 1 u = − +
Only option (b) is satisfied 

Q.15 (d) 
1

2

3

0 a 0
A 0 0 a

a 0 0

 
 =  
  

, 

0
B 0

1

 
 =  
  

[ ]TC 1 0 0=
For system to be controllable, the 
metric cQ must be nonsingular. 

2
cQ B AB A B =  

[ ]T
2AB 0 a 0=

1 2
2

2 3

1 3

0 0 a a
A a a 0 0

0 a a 0

 
 =  
  

[ ]22
1 2A B a a 0 0=

1 2

c 2

0 0 a a
Q 0 a 0

1 0 0

 
 =  
  

2
c 1 2Q a a= −

For cQ  to be nonsingular 

cQ 0≠  
∴ 1 2 3a 0 and a 0 and a R≠ ≠ 

Q.16 (a) 

So, 1 1x x u = − −

( )2 2 1 2 1x x x (x x u) = − + = − − −

2 1 2x x x u = − +

2y x=

1 2y x x u= − +

1 1

2 2

x x1 0 1
u

x x1 1 1




− −      
= +      −      
1 0 1

x X u
1 1 1



− −   
= +   −   
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Q.17 (a) 
1 0

A
1 1
− 

=  − 
s 1 0

sl A
1 s 1
+ 

− =  − + 

[ ] 1sl 1 −−

= 1
(s+1)×(s+1)

�s + 1 0
1 s + 1�

[ ]

( )

1

2

1 0
s 1

sl 1 1 1
s 1s 1

−

 
 + − =
 
 ++ 

( ) ( ){ }1At 1Φ t e L s l −−= = −

t
At

t t

e 0
e

te e

−

− −

 
=  
 

Q.18 (b) 
 From the given state model, 

[ ]
1 1 0 0

0 1 0 B 4 1A c 11
0 0 2 0

−   
   − =   
     

=
−

=

Controllable: Qc = c= [B AB A2B] 
if |Qc|≠0 controllable  

c c

0 4 8
4 4 4
0 0 0

Q | Q 0
− 

 − ⇒ 
  

= =

 ∴   uncontrollable 

  Observable : 
2

0Q
C

CA
CA

 
=  
 
  

 If c|| Q   0≠ →  observable 

c c

1 1 0
1 0 2

1 1 4
Q   Q 1

 
 − − ⇒ 
 − 

= =  

∴  Observable. 
The system is uncontrollable and 
observable  

Q.19 (c) 
Solution of state equation of 
 X (t) = L-1 [SI ‒A-1] X (0) 

( )
1 1 0

AX
1 0 2

0  
−   

=   − −   
=

[ ]
1

1 S 1 0
SI A

0 S 2

−
− + 

− =  + 

( )
S 2 01

0 S 1S 1 (S 2)
+ 

=  ++ +  

[ ] 1

1 0
S 1SI A

10
S 2

−

 
 +− =  
 
 + 

[ ]
1

11

1

1L 0
S 1

L SI A
10 L

S 2

−

−−

−

  
  +  − =
  
  +  

( )
t

11
2t

e 0
L SI A

0 e

−
−−

−

  − =     
 

t
1

2t
2

X (t) 1e 0
X (t) 10 e

−

−

    
=     −    

t
1

2t
2

X (t) e
X (t) e−

 − 
=    −   

( )
( )

t
1

2t
2

X t e
X t e

−

−

=
∴

= −

Q.20 (a) 
From  the given signal flow graph, 
the state model is 

1 1

2 2

3 3 2 1 3

X 0 1 0 X 0
X 0 0 1 X 0 u
X a a a X 1

       
       = +       
              

[ ]
1

1 2 3 2

3

X
Y C C C X

X

 
 =  
  

 

3 2 1

0 1 0
A 0 0 1

a a a

 
 =  
  
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[ ]1 2 3

0
B 0 ;C C C C

1

 
 = = 
  

Controllability: 
2

c B AB AQ B=   

c 1
2

1 2 1

0 0 1
Q 0 1 a

1 a a a

 
 
 


=
+ 

c|Q | 1 0= ≠  
Observability 

0
2

1 1 3

3 3 1 2 3 2 1 3
2

2 3 3 1 3 2 2 3 1 2 3 1 1 2 3 1 2

C
Q CA

CA

C C C
a c c a c c a c

c a c (a a ) a c

 

c (a a a ) c a c c (a a )

 
  ⇒ 
  

 
 + + 
 + + + + + + 

0| Q |  ⇒
depends on 1 2 3 1 2 3a ,a ,a c c &c& &
It is always controllable 

Q.21 (b)  
Apply linearity principle, 

3 1 0
a b s

5 1 1
     

= +     −     
 a 3;  b 8= =  

( )
t t 2t

t t 2t

e e e
e e 2e

x t  3
− − −

− − −

   −
⇒ +   − − + 

=
 

⇒ ( )
t 2t

t 2t

11e 8e
11e 16e

 x t
− −

− −

 −
 − + 

=

Q.22 (d) 
 Given state model, 

1 1

2 2

X (t) X (t)0 1
X (t) X (t)0 0
    

=    
    

0 1
0 0

A  
 
 

=  

state transition matrix 
( ) 11(t) L SI Aφ −−  ⇒ − 

1
1

2

s 1 s 11[SI A]
0 s 0s s

−

− =
−   

−  


= 
 

⇒ 


( )
2

1
1 1

s sL
10 s

 tφ −
 
 
 
 

=

( )
1 t
0 1

tφ
 
 
 

=

Q.23 (a) 
The set of equation of the system 
are  

( )1
1

dx (t) 2x (t t
d

u)
t

3→ + = ⇒

( )1 1 2(t (t  ) 2 ) 0 t) 3u t(x x x= − + +  

( )

( )

2
2

2 1 2

dx (t) x (t)
dt

x (t

u t

) 0 )x (t x (t) u t

= ⇒

− +

+

=

( ) 1 2x (t) + 0C = xt (t)  
→ we can  frame  the  n state of the 
system as  

1 1

2 2

x x-2 0 3
= + 4

x x0 -1 1
      
      

      
 

[ ] 1

2

Y 0  1 
x
x

=
 
 
 

 A matrix is
2 0

0 1
− 
 − 

→

B matrix is 
3
1
 
 
 

C matrix is [1    0] 
→ for control ability determinant of 
B AB 0≠  

3 6 
3 6

0
1 1

− 
≠ − 

= − +  so controllable 

→ For observability determinant of 

C
C

0
Ca
 

≠ 
 

1 0
2 0

0 
 − 

→ =  so not observable 

→Final controllable but not 
observable 

Q.24 (a) 
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From the given state space 
representation of the system, we can 
find matrices as, 

( )
4 1.5

A
4 0
− − 

=  
 

( )
2

B
0
 

=  
 

[ ] [ ]C 1.5     0.625=
We can find the transfer function 
using 
( ) ( ) 1T s C sI A .B− = −  (i) 

[ ] s 0 4 1.5
sI A

0 s 4 0
− −   

− = −   
   

 

s 4 1.5
4 s
+ 

=  − 
( ) ( ) 2sI A s s 4 4 1.5 s 4s 6− = + − − × = + +

[ ] s 1.5
Adj sI A

4 s 4
− 

− =  + 
 

Obtained by interchanging principle 
diagonal elements and changing signs 
of other elements 

Hence, [ ] [ ]1 Adj sI A
sI A

sI A
− −

− =
−

2 2

2 2

s 1.5
s 4s 6 s 4s 6

4 s 4
s 4s 6 s 4s 6

− 
 + + + +=  

+  + + + + 

[ ]
2 21

2 2

s 1.5
2s 4s 6 s 4s 6sI A .B

4 s 4 0
s 4s 6 s 4s 6

−

− 
  + + + +− =   +   + + + + 

[ ]
21

2

2s
s 4s 6sI A .B

8
s 4s 6

−

 
 + +− =  
  + + 

 

Substituting values of [ ] 1sI A .B−− and 
C in equation (i), 

( ) [ ]
2

2

2s
s 4s 6T s 1.5     0.625

8
s 4s 6

 
 + +=  
  + + 

 

( ) 2 2

3s 5T s
s 4s 6 s 4s 6
 = + + + + + 

( ) 21x1
1x1

3sT s
s 4s 6
 =    + + 
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Q.1 Given the homogeneous state-space 

equation
3 1

X x
0 2
− 

=  − 
 the steady 

state value of ss x
X lim x(t)

→∞
= , given 

the initial state value of
( ) [ ]Tx t 10 10= − , is 

a) ss

0
X

0
 

=  
 

b) ss

3
X

2
− 

=  − 

c) ss

10
X

10
− 

=  
 

d) ssX
∞ 

=  ∞ 
 [GATE-2001] 

Q.2 The state transition matrix for the 
system  X AX= with initial state is 
a) ( ) 1

s A
−

−

b) Ate X(O)

c) Laplace inverse of ( ) 1
s A

− −
 

d) Laplace inverse of

( ) 1
s A X(O)

− −
 

[GATE-2002] 

Q.3 For the system
2 0 1

X X u;
0 4 1
   

= +   
   



[ ]y 4 0 X=  with u as unit impulse
and with zero initial state, the 
output y becomes 
a) 2t2e b) 2t4e
c) 4t2e d) 4t4e

[GATE-2002] 

Q.4 For the system
2 3 1

X X u
0 5 0
   

= +   
   

, 

which of the following statement is 
true? 
a) The system is controllable but

unstable.

b) The system is uncontrollable and
unstable.

c) The system is controllable and
stable.

d) The system is uncontrollable and
stable.

 [GATE-2002] 

Q.5 A second order system starts with 

an initial condition of 
2
3
 
 
 

without 

any external input. The state 
transition matrix for the system is 

given by
2t

t

e 0
0 e

−

−

 
 
 

. The state of the 

system at the end of 1 second is 
given by 

a) 
0.271
1.100
 
 
 

 b) 
0.135
0.368
 
 
 

c) 
0.271
0.736
 
 
 

 d) 
0.135
1.100
 
 
 

           [GATE-2003] 

Q.6 The following equation defines a 
separately excited dc motor in the 
form of a differential equation 

2 2

a2

d B d K K V
dt J dt LJ LJ
ω ω
+ + ω =

The above equation may be 
organized in the state-space form as 
follows 

2

2

a

d d
dt P QVdt
d
dt

 ω ω  
 = + 
 ω  ω   

where the P matrix is given by 

a)

2B K–
J LJ

1 0

 
− 

 
  

 b)

2K B
LJ J
0 1

 
− − 
 
  

GATE QUESTIONS(EE) 

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



c) 2

0 1
K B–
LJ J

 
 
 −
  

 d) 2

1 0
B K–
J LJ

 
 
 −
  

 

 [GATE-2003] 

Q.7 The state variable description of a 
linear autonomous system is, X=AX, 
where X is the two dimensional 
state vector and A is the system 

matrix given by 
0 2

A
2 0
 

=  
 

. The 

roots of the characteristic equation 
are  
a) 2 and 2− + b) j2 and j2− +
c) 2 and 2− − d) 2 and 2+ +

 [GATE-2004] 

Statement for common data 
question Q.8 and Q.9:                  
A state variable system 

( )
s 1
0 3

X t  
 − 

=  ( )
0

X t
1

+


 
 

 U(t), 

With initial condition 
( ) [ ]TX 0 1 3= −  and the unit step 

input u(t) has 

Q.8 The state transition matrix 

a) ( )3t

3t

11 1 e
3

0 e

−

−

 − 
 
 

 

b) ( )t 3t

t

11 e e
3

0 e

− −

−

 − 
 
 

c) ( )t 3t

3t

11 e e
3

0 e

− −

−

 − 
 
 

d) ( )t

t

1 1 e

0 e

−

−

 −
 
  

 [GATE-2005] 

Q.9 The state transition equation 

a) ( )
t

t

t e
X t

e

−

−

 −
=  
 

b) ( )
t

3t

t e
X t

3e

−

−

 −
=  
 

c) ( )
3t

3t

t e
X t

3e

−

−

 −
=  
 

d) ( )
3t

t

t e
X t

e

−

−

 −
=  
 

[GATE-2005] 

Q.10 For a system with the transfer 

function ( ) 2 2

3(s 2)H s
s 4s 2s 1

−
=

+ − +
, the 

matrix A in the state space form 
X Ax Bu= +  is equal to  

a) 
1 0 0
0 1 0
1 2 4

 
 
 
 − − 

        b) 
0 1 0
0 0 1
1 2 4

 
 
 
 − − 

c) 
0 1 0
3 2 1
1 2 4

 
 − 
 − 

           d) 
1 0 0
0 0 1
1 2 4

 
 
 
 − − 

 [GATE-2006] 

Statement for Linked Answer Questions 
Q.11 and Q.12: 
The sate space equation of a described by 
x=Ax+Bu, y= Cx where x is where x is state 
vector, u is input, y is output and 

0 1 0
B C [1  1

1
A ]

0 2
   

= = =  −   

Q.11 The transfer function G(s) of this 
system will be 

a) 
( )

s
s 2+

  b) s 1
s(s 2)

+
−

c) s
(s 2)−

d) 1
s(s+2)

[GATE-2008] 

Q.12 A unity feedback is provided to the 
above system G(s) to make it a 
closed loop system as shown in 
figure. 

For a unit step input r(t), the steady 
state error in the input will be 
a)0 b) 1
c)2 d) ∞

       [GATE-2008] 
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Statement for common data Question 
Q.13 and Q.14: 

A system is described by the following state 
and output equations 

( )1
1 2

dx (t) 3x (t) x t 2u(t)
dt

= − + +

( )2
2

dx (t) 2x t u(t)
dt

= − +

y(t) = 1x (t) ,when u(t) is the input and y(t) is 
the output. 

Q.13 The system transfer function is 

a) 2

s+2
s +5s-6

  b) 2

s+3
s +5s+6

c) 2

2s+5
s +5s+6

d) 2

2s-5
s +5s-6

[GATE-2009] 

Q.14 The state-transition matrix of the 
above system is 

a) 
-3t

-2t -3t -2t

e 0
e +e e
 
 
 

   b) 
-3t -2t -3t

-2t

e e -e
0 e

 
 
 

c) 
-3t -2t -3t

-2t

e e +e
0 e

 
 
 

   d) 
3t -2t -3t

-2t

e e -e
0 e

 
 
 
[GATE-2009] 

Q.15 The system X AX BU= +&  and
1 2 0

A ,B
0 2 1
−   

= =   
   

 is 

a) stable and controllable
b) stable but uncontrollable
c) unstable but controllable
d) unstable and uncontrollable

          [GATE-2010] 

Q.16 The state variable description of an 
LTI system is given by 

1 1 1

2 2 2

3 3 3

X 0 a 0 X 0
X 0 0 a X 0 u
X a 0 0 X 1

      
      = +      

           

&
&
&

 

( )
1

2

3

X
y 1 0 0 X

X

 
 =  
 
 

Where y is the output and u is the 
input. The system is controllable for  
a) 1 2 3a 0, a =0, a 0≠ ≠  
b) 1 2 3a =0, a 0, a 0≠ ≠  
c) 1 2 3a =0, a 0, a =0≠  
d) 1 2 3a 0, a 0, a =0≠ ≠  

[GATE-2012] 

Common Data for Questions Q.17 and 
Q.18 
The state variable formulation of a system 
is given as 

( )11
1

22

x2 0 1X
u, x 0

x0 1 1X
  −     

= +      −     





( )20, 0 0= =x And [ ] 1

2

y  1 0=
 
 
 

x
x

 

Q.17 The system is 
a) Controllable but not observable
b) Not controllable but observable
c) Both controllable and observable
d) Both not controllable and not

observable
         [GATE-2013] 

Q.18 The response y(t) to a unit step 
input is 

a) -2t1 1- e
2 2

b) -2t -t1 11- e - e
2 2

c) -2t -te  -e d) -t1-e
[GATE-2013] 

Q.19 The state transition matrix for the 
system  

1 1

2 2

x x1 0 1
u

x x1 1 1
      

= +      
      





 is 

a) 
t

t t

e 0
e e
 
 
 

 b) 
t

2 t t

e 0
t e e
 
 
 

c) 
t

t t

e 0
te e

 
 − 

d) 
t t

t

e te
0 e

 
 
 

 [GATE-2014] 

Q.20 Consider the system described by 
following state space equations 
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1 1

2 2

x x0 1 0
u;

x x1 1 1
      

= +      − −      





1

2

x
y [1,0]

x
 

=  
 

If μ is unit step input, then the 
steady state error of the system is  
a) 0 b) 1/2
c) 2/3 d) 1

 [GATE-2014] 

Q.21 In the signal flow diagram given in 
the figure, u1 and u2  are possible 
inputs whereas y1 and y2 are 
possible outputs. When would the 
SISO system derived from this 
diagram be controllable and 
observable?  

 
 

 

 

a) When u1 is the only input and y1
is  the only output

b) When u2  is the only input and y1
is  the only output

c) When u1is the only input and y2
is  the only output

d) When u2  is the only input and y2
is  the only output

[GATE-2015] 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
(a) (c) (b) (b) (a) (a) (a) (a) (c) (b) (d) (a) (c) (b) 
15 16 17 18 19 20 21 
(c) (d) (a) (a) (c) (a) (b) 

ANSWER  KEY: 
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Q.1 (a) 
1

s A
−

 −  

=
1s 3 1

0 s 2

−+ − 
 + 

( ) ( )

( )

1 1
s 3 s 2 s 3

10
s 2

 
 + + + =
 
 + 

1At 1e s A
−−=  −  

3t 2t 3t

2t

e e e
0 e

− − −

−

 −
 
 
( ) Atx t e X(O)=

3t 2t 3t

2t

10e e e
100 e

− − −

−

 −  
   −  

( )
3t 2t

2t

20e 10e
 x t

10e

− −

−

 −
∴ =  − 

( )ss

lim 0
 X x t

t 0∞
 

∴ = =  →  
 

Q.2 (c) 
1At 1e s A

−−=  −  

Q.3 (b) 

( ) ( ) ( )A t τAt

t

X t e X O e BU(τ)dτ

0

−= + ∫

( )x t 0(given)∴ =  
( )x t O∴ =

2(t τ)

4(t τ)

t
1e 0

. .δ(t)dt
10 e

0

−

−

   
+    

  
∫

( )

( ) ( )
2 t τ 2t

4t4 t τ

t
e e

.δ t dt
ee

0

−

−

   
= =   

    
∫

Output [ ]y(t) 4 0 .x(t)=

[ ]
2t

4t

e
4 0 .

e
 

=  
 

Hence, ( ) 2ty t 4e=

Q.4 (b) 

c

1 2
Q 0

0 0
= =  

⇒ Uncontrollable. Characteristic
equation: 
s A 0− =  
s 2 3

0
0 s 5
− −

=
−

 

2s 7s 13 0− + =  
⇒ eigen values,
s 3.5 j0.866= ±  
i.e. roots lies on right side of s-plane. 
⇒ unstable.

Q.5 (a) 
State transition matrix 

( )
2t

t

e 0
t .

0 e
φ

−

−

 
=  
 

 

Initial conditions, ( )
2

x O
3
 

=  
 

Zero input response is given by 
( ) ( ) ( )X t t x Oφ=

2t 2t

t t

2e 0 2e
30 e 3e

− −

− −

    
= =    

    
State of the system at 𝑡𝑡 = 1 𝑠𝑠 

( )
2

1t 1

0.2712e
x t

1.1003e

−

−=

   
= =   

  

EXPLANATIONS 
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Q.6 (a) 

Let 1 2
dωx and x ω
dt

= =

2 1x = x

2 2

a2

d ω B dω K Kω V
dt J dt LJ LJ

+ + =

2 2

a2

d ω B dω K Kω V
dt J dt LJ ω

= − − +

2

1 1 2 a
B K Kx x x V
J LJ LJ

⇒ = − − +

2 1x x =

1 1
a

2 2

x x
P QV

x x




   
= +   

   
Where 

2 KB K
P and Q LJJ LJ

01 0

   
− −   = =   
    

Q.7 (a) 

System a matrix 
0 2

A
2 0
 

= =  
 

s 0 0 2
s A

0 s 2 0
   

− = −   
   

s 2
2 s

− 
=  − 
Characteristic equation 

s A 0⇒ − =

s 2
0

2 s
−

=
−

2s 4 0⇒ − =
Roots of the characteristic equation 
are -2 and +2. 

Q.8 (a) 

( ) ( )
0 1 1

x t x t V(t)
0 3 0



   
= +   −   

…(i) 

( ) ( )x t Ax t Bu(t) = + …(ii)
Comparing eq. (i) and (ii), we get 
A=System matrix   

0 1 1
&B

0 3 0
   

= =   −   
s 0 0 1

s A
0 s 0 3
   

 −  = −     −   
s 1
s s 3

− 
=  + 

( )
1

s 3 1
0 s

s A
s s 3 0x( 1)

−

+ 
 
  −  =  + − −

1 1
s s(s 3)

10
s 3

 
 + =
 
 + 

1

1 1 1 1
s 3 s s 3s A

10
s 3

−

  −  +   −  =   
 + 

State transition matrix 

( ) 11 s A
−−  = − 

( ) ( )3t

3t

11 1 e
t 3

0 e
φ

−

−

 − =
 
 

Q.9 (c) 
ZIR (zero input response) 

(t) X(O)φ= ×
3t

3t

1 11 (1 e )
3

30 e

−

−

  −−   =      
3t

3t

1 1 e
3e

−

−

 − + −
=  
 

3t

3t

e
3e

−

−

 −
=  
 

ZSR (zero state response) 

( ) 11 s A BU(s)
−−  = − 

1

1 1
1 1s s(s 3)
0 s10

s 3

−

  
    +  =   
    
  +  


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2
1 t1/ s

00
−    

= =   
  



∴State transition equation 
3t

3t

te
ZIR ZSR

03e

−

−

 −  
= + = +   

  
3t

3t

t e
3e

−

−

 −
=  
 

Q.10 (b) 

( ) ( )
( ) 2 2

Y s 3(s 2)H s
U s s 4s 2s 1

−
= =

+ − +

( )
( )

( )
( )

1

1

Y s X s
.

X s U s

3 2

13(s 2)
s 4s 2s 1

 = −  + − + 

Let ( )1
3 2

X s 1
U(s) s 4s 2s 1

=
+ − +

( ) ( ) ( ) ( )3 2
1 1 1 1S X s 4s x s 2sx s x s u(s)+ − + =

Replacing s by d
dt

3 2
1 1 1

12 2

d x d x dx4 2 x u(t)
dt dt dt

+ − + = …(i) 

Let 1
2 1

dx x x
dt

= =

2
1

2 3
d x x x
dt

= =

Replacing eq. (i) 
3 3 2 1x 4x 2x x u(t) + − + =

3 1 2 3x x 2x 4x u(t) = − + − +  

1 2x x =

2 3x x =

3 1 2 3x x 2x 4x u(t) = − + − +  

1 1

2 2

3 3

X 0 1 0 X 0
X 0 0 1 X 0 u(t)
X 1 2 4 X 1







      
      = +      
      − −     

 

So, 
0 1 0

A 0 0 1
1 2 4

 
 =  
 − − 

Q.11 (d) 
X Ax Bu = +  
and  y cx=
where 

0 1 0
A ,B ;

0 2 1
   

= =   −   
 

[ ]C 1 0 &D 0= =

s 0 0 1
S A

0 s 0 2
   

 −  = −     −   
s 1
0 s 2

− 
=  + 

1 s 2 11s A
0 ss(s 2)

− + 
 −  =    +  
Transfer function 

1
C s A B D

−
=  −  +   

[ ]

s 2 1 0
0 s 1

1 0
s(s 2)

+   
   
   =

+

[ ]

1
s 11 0

s(s 2) s(s 2)

 
 
 = =
+ +

Q.12 (a) 

( ) 1G s
s(s 2)

=
+

and  ( )H s 1=  
( ) ( )r t u t=  

⇒ ( ) 1R s
s

=  

Error ( ) ( )
R(s)E s

1 G s H(s)
= =

+
1/ s

11
s(s 2)

=
+

+

⇒ ( ) ( )
s 2E s

s s 2 1
+

=
+ +

Steady state error, using final value 
theorem 

ss

Lt
e sE(s)

s 0
=

→
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( )
Lt s(s 2) 0

s 0 s s 2 1
+

= =
→ + +

Q.13 (c) 
Selecting 1X (t)  and 2X (t)  as state 
variables. 

( ) ( )1
1

dx t
X t

dt
 =

( ) ( )1 23x t x t 2u(t)= − + +

( ) ( )2
2 2

dx (t)X t 2x t u(t)
dt

 = = − +

( )
( )

1

2

X t
X t





 
 
 

( )
( )

1

2

3 1 x t 2
u(t)

0 2 x t 1
 −   

= +    −    
X AX BU = +  

So, 
3 1 2

A ,B
0 2 1
−   

= =   −   
( ) 1y t x (t)=  

( ) [ ] ( )
( )

1

2

x t
y t 1 0

x t
 

=  
 

y CX DU= +  
So,  [ ]C 1 0 &D 0= =

s 0 3 1
s A

0 s 0 2
−   

 −  = −     −   
s 3 1

0 s 2
+ − 

=  + 

( ) ( )
1

s 2 1
0 s 3

s A
s 2 s 3

−

+ 
 +  −  =  + +

Transfer function 
1

C s A B D
−

=  −  +   

[ ] ( ) ( )

s 2 1
20 s 3

1 0 0
1s 2 s 3

+ 
 +   = + + +  

 

[ ] ( )

( ) ( )

2 s 2 1
1 0

s 3
s 2 s 3

 + +
 + =
+ +

( ) ( ) 2

2s 5 2s 5
s 2 s 3 s 5s 6

+ +
= =

+ + + +

Q.14 (b) 

[ ] ( ) ( )
1

s 2 1
0 s 3

sI A
s 2 s 3

−

+ 
 + − =
+ +

( )
1 1

s 3 s (s 3)
10

s 2

 
 + + + =
 
 + 

1 1 1
s 3 s 2 s 3

10
s 2

 − + + +=  
 
 + 

State transition matrix 
( ) 11 sI A −−  = − 

1

1 1 1
s 3 s 2 s 3

10
s 2

−

 − + + +=  
 
 + 



3t 2t 3t

2t

e e e
0 e

− − −

−

 −
=  
 

Q.15 (c) 
1 2 0

A &B
0 2 1
−   

= =   
   

[ ] s 0 1 2
sI A

0 s 0 2
−   

− = −   
   

s 1 2
0 s 2
+ − 

=  − 

[ ] ( ) ( )
1

s 2 2
0 s 1

sI A
s 1 s 2

−

− 
 + − =
+ −

  …(i) 

Transfer function 
1

C s A B
−

=  −    
So denominator of eq. (i) gives 
Poles of the system 
( ) ( )s 1 s 2 0+ − =
s 1 2= − &  
One pole lies in RHS of s-plane. 
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Hence, the so, system is unstable. 
For controllability, is cQ  defined as 

[ ]cQ B : AB=

1 2 0 2
AB

0 2 1 2
−     

= =     
     
[ ]cQ B : AB=

0 2
1 2
 

=  
 

cQ 0≠  
Hence the system is controllable. 

Q.16 (d) 
1

2

3

0 a 0
A 0 0 a

a 0 0

 
 =  
  

, 

0
B 0

1

 
 =  
  

[ ]TC 1 0 0=
For system to be controllable, the 
metric cQ must be nonsingular. 

2
cQ B AB A B =  

[ ]T
2AB 0 a 0=

1 2
2

2 3

1 3

0 0 a a
A a a 0 0

0 a a 0

 
 =  
  

[ ]22
1 2A B a a 0 0=

1 2

c 2

0 0 a a
Q 0 a 0

1 0 0

 
 =  
  

2
c 1 2Q a a= −

For cQ  to be nonsingular 

cQ 0≠  
∴ 1 2 3a 0 and a 0 and a R≠ ≠ 

Q.17 (a) 
2 0 1

A ,B
0 1 1
−   

= =   −   

2 0 1 2
A

0 1 1 1
− −     

= =     − −     
For controllability, B : AB 0≠  

or   
1 2

1
1 1
−

= −
−

 

( )2 1 0− − = ≠
The system is controllable. 

T 1
C

0
 

=  
 

T T 2 0 1 2
A C

0 1 0 0
− −     

= =     −     
For observability, T T TC : A C 0≠

or   
1 2

0
0 0
−

=

The system is not observable. 

Q.18 (a) 
s 0 2 0

S A
0 s 0 1

−   
 −  = −     −   

s 2 0
0 s 1
+ 

=  + 

1
1 0

s A s 2 1
0 s 1

−
 
  −  = +   

+ 

[ ]1
S A B

−
 −  

11 0 1 s 2s 2 1 1 10 s 1 s 1

      + = =  +       +   + 

[ ]1
C s A B

−
 −  

1
1s 2[1 0]

1 s 2
s 1

 
 += = 

+ 
 + 

( ) 1G s
s 2

=
+

( )
( )

Y s 1
X s s 2

=
+
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1 1 1 1Y(s)
s(s 2) 2 s s 2

 = = − + + 

( ) ( )2t1Y t 1 e
2

−= −

2t1 1 e
2 2

−= −

Q.19 (c) 

Give  
1 0 1

A = B = 
1 1 1
   
   
   

 

[ ]
1

1 s 0 1 0
SI A

0 s 1 1

−
−     

− = −    
    

[ ] 1

2

1 0
(s 1)

SI A
1 1

(s 1) (s 1)

−

 
 − − =
 
 − − 

 

The state transition matrix 
[ ] 1At 1e L SI A −−= −

t
At

t t

e 0
e

te e
 

=  
 

Q.20 (a) 
Transfer function ⟹ 1C[SI — A1] .B−  

[ ]
1S 1 0

1 0
1 (s 1) 1

−−   
=    +   

Transfer function 2

1
1s s

=
+ +

2

G(s) 1
1 G(s) 1s s

=
+ + +

⇒  ( ) 2

1G s
s s

=
+

Steady state error for unit step 

ss
p

Ae
1 K

=
+

 ss

s 0

1e
1 lim G(s)

→

=
+

 ss

2s 0

1e 11 lim
s s→

=
+

+

 ss
1e

1
=

+∞
 sse 0=

Q.21 (b) 
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Q.1  The state-variable representation of 
a plant is given by 
x Ax Bu, y Cx= + =  
Where the state, u is the input and y 
is the output. Assuming zero initial 
conditions, the impulse response of 
the plant is given by  
a) exp(At)
b) ( )exp[A(t τ)]Bu τ dτ−∫
c) ( )Cexp At B

d) ( )C exp[A(t τ)]Bu τ dτ−∫
           [GATE-2006] 

Q.2 The state space representation of a 

system is given by 
0 1

x=
0 -3
 
 
 

 X+

1
0
 
 
 

[ ]u,y = 1 0 x. The transfer

function Y(s)
U(s)

 of the system will be 

a) 1
S

b) 1
s(s+3)

c) 1
(s+3)

d) 2

1
S

           [GATE-2008] 

Q.3 A linear time invariant single –input 
single output system has state space 
middle given by  
dx Fx Gu; y Hx
dt

= + =

 
 
 
 

where 

[ ]0 1 1
F= ;G= ;H 1 0

-4 -2 0
   
   
   

Here, x is the state vector, u is the 
input, and y is the output. The 
damping ratio of the system is 
a)0.25 b)0.5 
c)1 d)2 

    [GATE-2009] 

Q.4 The transfer function of the system 
described by the state- space 
equations. 

1 1

2 2

x x-4 -1 1
= +

x x-3 -1 1
      
      

      





u,y = [ ]1 0

1

2

x
x
 
 
 

is  

a) 2

s
s +5s+1

b) 2

2s
s +5s+1

c) 2

3s
s +5s+1

d) 2

4s
s +5s+1

[GATE-2011] 

Q.5 A system is represented in state-
space as  AX BX  u,= + , where = A 

1 2
α 6
 
 
 

 and 
1

B
1
 

=  
 

.  The value of α 

for which the system is not 
controllable is ______. 

[GATE-2015] 

 

1 2 3 4 5 
(d) (a) (b) (a) -3 

ANSWER  KEY: 

GATE QUESTIONS(IN) 
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Q.1 (d) 
( ) 1 1

0x t L (C(SI A) B.U(S))− −= −  

( ) ( )At
0x t C e *Bu(t)⇒ =

( ) ( )A(t-τ)
0x t =C e .Bu τ dτ∫

Q.2 (a) 
  ( ) ( ) ( )1G s C SI A B; SI A−= − −

( )
S 1
0 s 3

− 
=  + 

1 S 3 11(SI A)
0 3S(S 3)

− + 
⇒ − =  +  

( ) ( ) [ ] S 3 1 11G s 1 0
0 S 0S S 3

 +    
=     +     

( ) [ ] S 31 1 0
0S S 3

 +  
=   +   

 

( ) 1G s
S

⇒ =

Q.3  (b) 

( )
3 1

SI A
4 S 2

− 
− =  + 

( ) 1SI A −⇒ −

( )2

(s 2) 11
4 Ss 2s 4
+ 

=  −+ +  

( ) [ ] ( )
( )

2

0s 2 11G s 1 0
14 SS 2S 4

 +  
=    −+ +   

( ) [ ] ( )2 2

11 11 0
SS 2S 4 S 2S 4
 

= = + + + + 

1ζ
2

⇒ =

Q.4 (a) 
( ) ( ) 1T s C SI A B D−= − +

[ ] ( )2

s 2 1 111 0
3 S 4 1S 5S 1
+ −   

=    − ++ +    

( )2

1
S 5S 1

=
+ +

Q.5 (-3) 
For a system to be uncontrollable, 
its controllability determinant 
should be equal to  zero. 

cQ =|BAB|=0

2×2 2×1

1 2 1 3
AB= =

α 6 +1 α+6
     
     
     

 

c

1 3
Q BAB 0

1 6
= → =

α +
6 3 0 3⇒α+ − = ⇒ α = −

EXPLANATIONS 
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7.1 INTRODUCTION 

In control theory a controller is a device 
which monitors and physically alters the 
operating conditions of a given dynamic 
system. Typical applications of controllers 
are to hold settings for temperature, 
pressure, flow or speed. The following six 
basic control actions are very common 
among industrial analog controllers: 
1) Two-position or on-off
2) Proportional
3) Proportional-plus integral
4) Proportional-plus derivative
5) Proportional plus integral plus

derivative

7.2 TWO-POSITION OR ON-OFF 
CONTROLLERS 

An on-off controller is the simplest form of 
temperature control device. The output 
from the device is either on or off, with no 
middle state. An on-off controller will 
switch the output only when the 
temperature crosses the set point. For 
heating control, the output is on when the 
temperature is below the set point, and off 
above set point. Two-position or on-off 
control is relatively simple and inexpensive 
and, for this reason, is very widely used in 
both industrial and domestic control 
systems. 
On-off controller algorithm is defined as:

( ) ( ) ( )
( ) ( )

max

min

  
 

U if  e t 0 ON state
u t

U if  e t 0 OFF state 
>=  <

Where: 
e (t) – control error (for unit feedback) 

u (t) – control signal (controller output). 

7.2.1  DISADVANTAGE 

An inadequacy in this way of control is that 
control signal oscillates which may cause 
control variable to oscillate around desired 
value. Sometimes there is no remedy for 
this problem. 
e.g. if level of liquid in tank is controlled 
using valve with only two possible states 
(open or closed) the level will always 
oscillates around desired value. 

7.3 PROPORTIONAL CONTROLLER 

Proportional action is the simplest and 
most commonly encountered of all 
continuous control modes. In this type of 
action, the controller produces an output 
signal which is proportional to the error. 
Hence, the greater the magnitude of the 
error, the larger is the corrective action 
applied. 
P controller control algorithm is given as: 

( ) ( )
( )

( )
( )

max o

o p o o

min o

U for e t e
u t u K e t for e e t e

U for e t e

>
= + − < <
 < −

Where: 
uo – Amplitude of control signal when 
control error is equal 0 
Kp– P controller gain for P mode nominal 
area e(t)<|eo| 

7 CONTROLLERS
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Many industrial controllers have defined a 
proportional band (PB) instead of gain: 

PB = 
P

100 %
K

It should be noted that for pK 1=  a 
proportional band is equal PB = 100%. 
 P controller can eliminate forced 
oscillations caused by use of on-off 
controller. However, a second problem 
arises. There exists now a steady state 
error. A relationship between control 
signal and error inside area oe(t) | e |<  is 
given as: 
( ) ( )o pu t u K e t= +

Steady state error is then: 

( ) ( ) o

p

u t u
e t

K
−

=

i.e. ( )
p

1e t
K

∝

Proportional controller can stabilize only 
1st order unstable process. In general it can 
be said that P controller cannot stabilize 
higher order processes. Changing 
controller gain K can change closed loop 
dynamics. A large controller gain will result 
in control system with: 
a) smaller steady state error, i.e. better

reference following
b) faster dynamics, i.e. broader signal

frequency band of the closed loop
system and larger sensitivity with
respect to measuring noise

c) smaller gain and phase margin

7.4 INTEGRAL CONTROLLER 

In integral controller the signal driving the 
controlled system is derived by integrating 

the error in the system. An integral control 
is sometimes called reset control. The 
transfer function of the controller is 

( )
( )

iM s K
E s s

=

and ( )
t

im(t) K e t dt
−∞

= ∫

7.4.1 EFFECTS 

1) It increases type and order by ‘1’
2) Integral controller improves the steady

state response
3) Steady state error reduces
4) Makes the system lesser stable
5) Speed of response reduces

7.5 DERIVATIVE CONTROLLERS 

In derivative controller the signal driving 
the controlled system is derived by 
differentiating the error in the system.  The 
transfer function of the controller is 

( )
( ) D

M s
K s

E s
=  and ( )

D

de t
m(t) K

dt
=

The o/p of controller can be predicted on 
the basis of knowledge of the slope of error. 
Therefore a derivative controller is 
anticipatory in nature giving output in 
advance. 

7.5.1 EFFECTS 

1) It improves transient response
2) Not used in isolation.
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3) Adding derivative action can restrict the
overshoots on controlled responses.

7.6 PD CONTROLLER 

A controller in the forward path, which 
changes the controller output 
corresponding to proportional plus 
derivative of the error signal is called PD 
controller. 

The transfer function of a PD controller is 
( )
( ) P D

M s
K K s

E s
= +  and 

( ) ( ) ( )
P D

de t
m t K e t K

dt
= +

7.6.1 EFFECTS 

1) Transient response is improved
2) It increases damping ratio
3) Type of the system remains unchanged
4) It reduces peak overshoot
5) It reduces settling time
6) Bandwidth increases

7.7 PI CONTROLLER 

A controller in the forward path, which 
changes the controller output 
corresponding to the proportional plus 
integral of the error signal is called PI 
controller. 

The transfer function of a PI controller is 

( )
( )

i
P

M s KK
E s s

= +

and ( ) ( )
t

P im(t) K e t K e t dt
−∞

= + ∫

7.7.1 EFFECTS 

1) It increases the order & type of the
system

2) Reduces steady state error
3) Bandwidth is reduced

7.8 PID CONTROLLERS 

The combination of proportional control 
action, integral control action, and 
derivative control action is termed 
proportional – plus – integral – plus – 
derivative control action. This combined 
action has the advantages of each of the 
three individual control actions. 

The equation of a controller with this 
combined action is given by 

( ) ( ) ( )
t

P
P P D

i

Km t K e t e t dt K T
T −∞

= + +∫
( )de t

dt
Or the transfer function is 

( )
( ) P D

i

U s 1K (1 T s)
E s Ts

= + +

Where,  KP is the proportional gain 

i
i

1T
K

= is the integral time 

D DT K= is the derivative time 

7.8.1 EFFECTS 

It improves both steady state as well as 
transient response. 
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8.1 INTRODUCTION 

Because of the prolonged use of the system 
the parameters of the system can change 
and output of the system may start 
deviating from the desired value. The 
system can be either replaced by a new 
system or it can be provided with a unit 
called compensators. 
The compensators are used to improve the 
performance of the system during runtime. 
In this chapter, we shall discuss electric 
network realization of basic compensators 
and their frequency characteristics. 

8.2 LEAD COMPENSATOR 

The circuit shows a typical lead derivative 
compensator. 

The designation lead applied to this 
network is based on the steady-state 
sinusoidal response. The sinusoidal 
response 2E  with a sinusoidal input 1E  
(Initial conditions are considered to be 
zero) is 

( ) ( )
1

2 1
2 1 1 2

s 1/ R CE s E (s)
s R R / R R C

+
=

+ +

( )
( )

2

1

E s s 1/ T 
E s s 1/ T

+
∴ =

+ α

Where, 1T R C= and ( )2 2 1R / R R 1α = + <  
Now, a lead compensator has a zero at 
s 1/ T= −  & pole at s 1/ T= − α . 

8.2.1 BODE PLOT FOR LEAD 
COMPENSATOR 

• For drawing Bode plot the corner
frequencies are c1ω 1/ T= & c2ω 1/ T= α . 

• The maximum phase lead occurs at a
frequency ωmwhich is geometric mean of
the two corner frequencies.

m
1 1 1ω .
T T T

= =
α α

• The maximum phase lead at frequency ωm

is given by 1
m

1sin
1

− −α ∅ =  + α 
• A phase lead compensator shifts the gain

crossover frequency to higher values
where the desired phase margin is
acceptable therefore it is effective when the
slope of the uncompensated system near
the gain crossover frequency is low.

8.3 
8.3 

8 COMPENSATORS
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8.3 LAG COMPENSATOR 

The circuit shown is a typical lag or integral 
compensator.  

The output signal is proportional to the 
sum of the input signal and its integral. The 
designation lag applied to this network is 
based on the steady-state sinusoidal 
response. The sinusoidal response 𝐸𝐸2 with 
a sinusoidal input 𝐸𝐸1 (Initial conditions are 
considered to be zero) is  

( ) ( )
2

2 1
2 1

1 R CsE s E (s)
1 R R Cs

+
=

+ +

( )
( ) ( )

2 2 2

1 1 2 2 1

E s R s 1/ R C   
E s R R s 1/ R R C

  +
∴ =  + + + 

1 s 1/ T.
β s 1/ βT

+
=

+
Where, 2T R C=  and ( )2 1 2β R R / 1R= + >  
Now, the lag compensator has zero at 
s 1/ T= −  & pole at s 1/ βT= − . 

8.3.1 BODE PLOT FOR LAG 
COMPENSATOR 

• For drawing Bode plot the corner
frequencies are c1ω 1/ βT= & c2ω 1/ T= . 

• The maximum phase lag occurs at a
frequency ωmwhich is geometric mean
of the two corner frequencies.

m
1 1 1ω .
βT T T β

= =

• The maximum phase lead at frequency

ωm is given by 1
m

1 βsin
1 β

−  −
∅ =  + 

• A phase lag compensator shifts the gain
crossover frequency to lower values
where the desired phase margin is
acceptable therefore it is effective when
the slope of the uncompensated system
near the gain crossover frequency is
high.

8.4 LAG-LEAD COMPENSATOR 

A lag-lead compensator is a combination of 
a lag compensator and a lead compensator. 
The lag section has one real pole and one 
real zero with the pole to the right of zero. 
The lead section also has one real pole and 
one real zero but the zero is to be the right 
of the pole. The general form of this 
compensator is 

The transfer function of the lag-lead 
compensator from the figure is 

( )
( )

2 1 2

1 1 2

E s (1 T s)(1 T s)
E s (1 T s)(1 βT s)

+ +
=

+α +

Where, 1 1 1T R C= , 2 2 2T R C=

( )2 1 2β R R / R= +
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( )2 2 1R / R Rα = +

The pole zero plot is 

8.4.1 BODE PLOT LAG-LEAD 
COMPENSATOR 

Note: 
1) Lag-lead network introduces both

steady state and transient response
improvement of the system.

2) For lead lag compensator the position
of compensating poles and zeros of lag
lead compensator can be interchanged.
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Q.1 A PD controller is used to 
compensate a system. Compared to 
the uncompensated system, the 
compensated system has 
a) a higher type number
b) reduced damping
c) higher noise amplification
d) larger transient overshoot

[GATE-2003] 

Q.2 A double integrator plant, 2

KG(s) ,
s

=

H(s) = 1 is to be compensated to 
achieve the damping ratio 0.5,ζ =  
and an undamped natural frequency, 

n 5rad / s.ω = . Which one of the 
following compensator eG (s)  will be 
suitable? 

a) s 3
s 9.9
+
+

b) s 9.9
s 3
+
+

c) s 6
s 8.33

−
+

d) s 6
s
+

[GATE-2005] 

Q.3  The transfer function of a phase-
lead compensator is given by 

e
1 3TsG (s)
1 Ts
+

=
+

where T > 0

The maximum phase-shift provided 
by such a compensator is  
a) / 2π b) / 3π
c) / 4π d) / 6π

[GATE-2006] 

Q.4 A control system with a PD 
controller is shown in the figure. If 
the velocity error constant VK 1000=
& the damping ratio 0.5,ζ = , then 
the values of PK and DK  are 

a) P DK 100,K 0.09= =  
b) P DK 100,K 0.9= =  
c) P DK 10,K 0.09= =  
d) P DK 10,K 0.9= =  

[GATE-2007] 

Q.5 The open-loop transfer function of a 

plant is given as 2

1G(s) .
s 1

=
−

 If the 

plant is operated in a unity feedback 
configuration, then the lead 
compensator that can stabilize this 
control system is  

a) 10(s 1)
s 2

−
+

b) 10(s 4)
s 2
+
+

c) 10(s 2)
s 10

+
+

d) 10(s 4)
(s 1)

+
+

[GATE-2007] 

Q.6 Group I gives two possible choices 
for the impedance Z in the diagram. 
The circuit elements in Z satisfy the 
condition 2 2 1 1R C R C .>  The transfer 

function 0

i

V
V

 represents a king of 

controller. Match the impedances in 
Group I with the types of controllers 
in Group II. 

GATE QUESTIONS(EC) 
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Group I 

Group II 
1. PID controller
2. Lead compensator
3. Lag compensator
a) Q-1, R-2 b) Q-1, R-3
c) Q-2, R-3 d) Q-3, R-2

[GATE-2008] 

Q.7 The magnitude plot of a rational 
transfer function G(s) with real 
coefficients is shown below. Which 
of the following compensators has 
such a magnitude plot? 

a) Lead compensator
b) Lag compensator
c) PID compensator
d) Lead-lag compensator

[GATE-2009] 

Q.8  A unity negative feedback closed 
loop system has a plant with the 

transfer function 2

1G(s)
s 2s 2

=
+ +

and a controller cG (s)  in the feed 
forward path. For a unit step input, 
the transfer function of the 
controller that gives minimum 
steady state error is  

a) c
s 1G (s)
s 2
+

=
+

b) c
s 2G (s)
s 1
+

=
+

c) c
(s 1)(s 4)G (s)
(s 2)(s 3)
+ +

=
+ +

d) c
2G (s) 1 3s
s

= + +

[GATE-2010] 

Statement of linked answer Q.9 and Q.10 
The transfer function of a compensator is 

given as c
s aG (s)
s b
+

=
+

Q.9 cG (s) is a lead compensator if 
a) a=1,b=2 b) a=3,b=2
c) a = -3,b = -1 d) a = 3,b = 1

[GATE-2012] 
Q.10 The phase of the above lead 

compensator is maximum at 
a) 2rad / s b) 3rad / s
c) 6rad / s d) 1/ 3rad / s

[GATE-2012] 

Q.11  A lead compensator network 
includes a parallel combination of R 
and C in the feed-forward path. If 
the transfer function of the 
compensator is  

c
s 2G (s)
s 4
+

=
+

, the value of RC is ____ 

[GATE-2015] 

Q.12 The transfer function of a first order 
controller is given as 

( )c
K(s as   )G

s b
+

=
+

where, K, a and b 

are positive real numbers. The 
condition for this controller to act as 
a phase lead compensator is  
a) a < b b) a > b
c) K < ab d) K > ab

[GATE-2015] 

Q.13 Which of the following can be the 
pole-zero configuration of a phase-
lag controller (lag compensator)? 
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   [GATE-2017-01] 

Q.14 Which of the following statements is 
incorrect? 
a) Lead compensator is used to
reduce the setting time. 
b) Lag compensator is used to
reduce the steady state error. 
c) Lead compensator may increase
the order of a system. 
d) Lag compensator always
stabilizes an unstable system. 

  [GATE-2017-02] 

  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
(c) (a) (d) (b) (c) (b)  (d) (d) (a) (a) (0.5) (a) (a) (d) 

ANSWER  KEY: 
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Q.1 (c) 
B.W. increases and SNR decreases. 
System becomes more prone to 
noise. 

Q.2 (a) 

0.5ξ =  
1cos 0.5 60− = °

∴ 60θ = °  

2
s 2.5 4.33 j

KG(s)
s =− +

∠ = v 

1 4.332 tan ;120
2.5

−= − °
−

∴For compensated system
180 120;60∠ = − °  

(b) & (d) are lag network & for 
compensating lag network 2K / s ,  a 
lead network is required 
∴Putting s 2.5 4.33= − + j in (a) 
gives 

2

K(s 3) 0.5 j4.33 53 ;60
s (s 9.9) 7.4 j4.33

+ +
= = ° °

+ +
∴ (a) is the  correct answer. 

Q.3 (d) 
Max phase shift 

m eG (s)φ = ∠
1 1tan 3 T tan T− −φ = ω − ω  

For maximum phase shift 
d 0
dt
φ
=

⇒ 2 2

3T T
1 (3T ) 1 (T )

=
+ ω + ω

2 23[1 (T ) ] 1 (3T )+ ω = + ω  
2 2 2 23 3T 1 9T+ ω = + ω  

22 6( T)= ω  
2 1( T)

3
ω =

1T
3

ω =

1 1
max

1 1tan 3 tan
3 3

− −φ = × −

3 6 6
π π π

= − =

Q.4 (b) 
v s 0

K limsG(s)H(s)
→

=  

P D
s 0

(K K s)1001000 lims
s(s 10)→

+
= ×

+
⇒ PK 100=  
Now characteristics eq. 
(1 G(s)H(s)) 0+ =  

P D(K K s)1001 0
s(s 10)
+

+ =
+

Putting PK 100=  
2 4

Ds 10s 10 100K s 0+ + + =  
2 4

Ds (10 100K )s 10 0+ + + =  
Comparing with standard second 
order eq. 
i.e. 2 2

n ns 2 s 0+ ξω +ω =
So n n D100;2 10 100Kω = ξω = +
Given 0.5;2 0.5 100ξ = × ×

D10 100K= +

DK 0.9=  

Q.5 (c) 
Lead compensator is required for 
stability.  

EXPLANATIONS 
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Q.6 (b) 
0i 1 1

1

VV (R C s 1)1
R Z

+
= −

⇒ 0 1 1

i 1

V Z(R C s 1)
V R

+
= −

In case of Q, 2 2

2

R C s 1Z
C s 1

+
=

+

In case of R, 2

2 2

RZ
R C s 1

=
+

Considering Q, 
0 1 1 2 2

i 1 2

V (R C s 1) (R C s 1).
V R C s

+ +
= −

Considering R, 
0 1 1 2

i 1 2 2

V (R C s 1) R.
V R (R C s 1)

+
= −

+
Q Given that 2 2 1 1R C R C>
∴Considering R, controller is log 
compensator. 
and considering Q, Controller is PID 
controller 

Q.7 (d) 

Q.8 (d) 
Steady state error, 

ss s 0
c

sR(s)e lim
1 G(s)G (s)→

=
+

r(t) u(t)=
1R(s)
s

=

ss s 0
c

1s .
se lim

1+G(s)G (s)→
=

ss s 0
c

1e lim
1 G(s)G (s)→

=
+

Taking, c ss
s 1 2G (s) ,e
s 2 3
+

= =
+

Taking, c ss
s 2 1G (s) ,e
s 1 3
+

= =
+

Taking, c ss
(s 1)(s 4) 3G (s) ,e
(s 2)(s 3) 5
+ +

= =
+ +

Taking, c ss
2G (s) 1 3s,e 0
s

= + + =

Q.9 (a) 

( )c
s aG s
s b
+

=
+

( )c
jω aG jω
jω b

+
=

+

( ) 1 1
c

ω ωG jω tan tan
a b

∠ − −= −

1
2

ω ω
a btan

ω1
ab

−

 
− 

=  
 + 
 

For ( )cG s  to be a lead compensator 
( )cG jω 0∠ >  

ω ω
a b
>

⇒ b > a
Option (a) satisfies the above 
equation. 

Q.10  (a) 
For phase to be maximum 
d 0
dt
φ
=

⇒
2ω 1 11

2 a b
   + −  

  
ω ω 2ω 0
a b ab

   − − =  
   

2ω 1 1 ω ω 2ω1
2 1 2 1 2 2

       + − = −      
      

2 21 ω ω
2 4 2
+ =

⇒
2ω 1

4 2
=

⇒ ω 2rad / sec.=

Q.11 (0.5) 

C
s 2G (s)
s 4
+

=
+

… (i)

For lead compensator 
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Transfer function 1 s
1 s
+ τ

=
+α τ

… (ii)

Where, 
τ  = Lead time constant = 1R C  

and 2

1 2

R
R R

α =
+

Comparing equation (i) and (ii), we 
get 

1
2

τ = and 1
4

ατ =

or 1
2

α =

∴RC time constant = 0.5 

Q.12 (a) 
  For phase lead compensator 
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Q.1 A lead compensator used for a 
closed loop controller has the 

following transfer function

sK 1
a

s1
b

 + 
 
 + 
 

For such a lead compensator 
a) a < b b) b < a
c) a > Kb d) a < Kb

[GATE-2003] 

Q.2 The system 900 / s(s 1)(s 9)+ +  is to 
be such that its gain-crossover 
frequency becomes same as its 
uncompensated phase crossover 
frequency and provides a °45  phase 
margin. To achieve this, one may use 
a) a lag compensator that provides

an attenuation of 20dBand a
phase lag of °45  at the frequency
of 3 3  rad/s

b) a lead compensator that
provides an amplification of
20dBand a phase lead of °45  at
the frequency of 3 rad/s

c) a lag-lead compensator that
provides an amplification of
20dB and a phase lag of °45  at
the frequency of 3  rad/s

d) a lag-lead compensator that
provides an attenuation of 20dB
and a phase lead of °45  at the
frequency of 3 rad/s

 [GATE-2007] 

Q.3 The transfer function of two 
compensators are given below: 

( )
( ) ( )1 2

10 s+1 s+10C = ,C =
s+10 10 s+1

Which one 

of the following statements is 
correct? 

a) 1C is lead compensator and 2C  is 
a lag compensator 

b) 1C  is lag compensator and 2C  is 
a lead compensator 

c) Both 1C  and 2C  are lead 
compensator 

d) Both 1C  and 2C  are lag 
compensator 

 [GATE-2008] 

Q.4 The second order dynamic system 
dX PX Qu
dt

= + , Y= RX has the 

matrices P, Q and R as follows: 
1 1

P
0 3
− 

=  − 
 

0
Q R [01]

1
 

= = 
 

The 

system has the following 
controllability and observability 
properties:  
a) Controllable and observable
b) Not controllable but observable
c) Controllable but not observable
d) Not controllable and not

observable
 [GATE-2014] 

Q.5 For the network shown in the figure 
below, the frequency (in rad/s) at 
which the maximum phase lag 
occurs is.  ___. 

 [GATE-2016] 

GATE QUESTIONS(EE) 
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1 2 3 4 5 
(a) (d) (a) (c) 0.316 

ANSWER  KEY: 
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Q.1 (a) 

Transfer function 

sK 1
a

s1
b

 + 
 
 + 
 

Zero of TF a= −  
Pole of TF b= −  
For a lead-compensator, the zero is 
nearer to origin as compared to 
pole, hence the effect of zero is 
dominant, therefore, the lead-
compensator when introduced in 
series with forward path of the 
transfer function the phase shift is 
increased. 
So, from pole-zero configuration of 
the compensator a b<  

Q.2 (d) 
Let uncompensated system 

( ) ( ) ( )
900T s

s s 1 s 9
=

+ +
Phase crossover frequency of 
uncompensated system ( )pcω= , at 

this frequency phase of  ( ) °T jω is 180−
Put s jω inT(s)=  

( ) ( ) ( )
900T jω

jω jω 1 jω 9
=

+ +

( ) ° 1 1 ωT jω 90 tan ω tan
9

∠ − −  = − − −  
 

 

at ( ) ( ) °
pc 1

ω , T jω 180∠ =

( )° ° 1
pc 1

180 90 tan ω−− = − −

( )pc1 °1
ω

tan 90
9

−
 
 − −
 
 

( ) ( )

( )

pc 1
pc 11

2

pc 1

ω
ω

9tan
ω

1
9

−
+

=

−

⇒
( )2

pc 1
ω

1 0
9

− =

⇒ ( )pc 1
ω 3rad / sec=  

Gain cross frequency of 
compensated system, ( )pc 2

ω

Phase cross frequency of 
uncompensated system, ( )pc 1

ω

⇒ ( ) ( )gc gc2 1
ω ω 3rad / sec= =  

Phase-margin 
( ) ( )gc 2

°
ω ω

180 T jω∠
=

= +

⇒ ( ) ( )gc 2

° °
ω ω

45 180 T jω∠
=

= +

At  ( )gc 2

3radω ,
sec

=

( )phase angle of  T jω is∠ °135− and
phase of uncompensated system is 

°180 at 3rad / sec− Therefore, the 
compensator provides phase lead of 
45° at the frequency of 3 rad/sec. 
Let XdB is the gain provided by the 
compensator, so at gain cross 
frequency. 
( )

com
T jω 1=  or 0 dB. 

Gain of uncompensated system 

( )
un com 2

2

100T jω
ωω 1 ω 1
9

−
=

 + +  
 

( )
un com

T jω in dB
−  

240 20log ω 20log 1 ω= − − +

EXPLANATIONS 
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2ω20log 1
9

 − +  
 

Gain of compensated system 
( ) ( )un comcom

T jω X T jω
−

= +

( )
com

T jω must be zero at gain cross 

frequency  ( )gc 2
ω

( ) ( )gc gc2 2com
T jω X 40 20log ω= + −

( )2

gc 2
20 log 1 ω− +

( )2

gc
2

ω
20log 1 0

9
− + =

2X 40 20log3 20log 1 3+ − − +
2320log 1 0

9
 − + = 
 

X 20dB= −  
So, the compensator provides an 
attenuation of 20 dB. 
Hence option (d) is correct. 

Q.3 (a) 
( )

( )1

10 s 1
C

s 10
+

=
+

zero at s = -1 
pole at s = -10 

As zero is closer origin, zero 
dominates pole. 
Hence 1C  is lead compensator. 

( )2
s 10C

10 s 1
+

=
+

zero at s=-10 
pole at s=-1 

As pole is closer origin, pole 
dominates zero. 
Hence 2C  is lag compensator. 
For phase to be maximum 

Q.4 (c) 

Given  
1 1 0

P Q
0 3 1
−   

= =   −   
 For controllability: 

 c

0 1
Q [Q PQ]

1 3
 

= ⇒  − 
  

cQ 0≠   ∴controllable 
For observability 

T T T
0

0 0
Q R P R

1 3
  = ⇒    − 

0Q 0=  
∴  Not observable 

Q.5 (0.316) 
The given circuit is standard lag 
compensator  
Whose Transfer function  

( )
11 s 1 1 ssG s 1 1 10s 1 sa 1

s

+ + + τ
= =

+ +ατ+ +

So τ = 1,α = 10  the frequency at 
which maximum phase lag happen  

m
1 1 0.316 rad / sec

10
ω = = =

τ α
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Q.1  The transfer function of a position 
servo system is given as 

( ) 1G s .
s(s 1)

=
+

A first order 

compensator is designed in a unity 
feedback configuration so that the 
poles of the compensated system 
are placed at 1 j1− ± and -4. The 
transfer function of the 
compensated system is  

a) s 3
2(s 5)

+
+

b) 2s 3
s 5
+
+

c) 5(s 1.6)
s 5
+
+

d) 3(2s 3)
s 4
+
+

            [GATE-2006] 

Common Data Questions Q.2, Q.3 and 
Q.4: 
The following figure describes the block 
diagram of a closed loop process control 
system. The unit of time is given in minute 

Q.2  The digital implementation of the 
controller with a sampling time of 
0.1 minute using velocity algorithm is  

a) ( ) ( )
k

i 1

m k 0.5 e k 0.5 e(k)
=

 
= + 

 
∑

b) ( ) ( )
k 1

i 1

m k 2.0 e k 2.0 e(k 1)
−

=

 
= + − 

 
∑

c) ( ) ( ) ( ) ( )m k m k 1 0.5 e k 0.85e k 1− − = − −  

d) ( ) ( ) ( ) ( )m k m k 1 0.5 1.05e k e k 1− − = − −  
 [GATE-2006] 

Q.3  Suppose a disturbance signal
( )d t sin 0.2t= units is applied .Then at 

steady state, the amplitude of the 
output e(t) due to the effect of 
disturbance alone is  
a) 0.129 unit b) 0.40 unit
c) 0.529 unit d) 2.102 unit

[GATE-2006] 

Q.4  The control action recommended 
for reducing the effect of 
disturbance at the output (provided 
that the disturbance signal is 
measurable) is 
a) cascade control
b) P-D control
c) ratio control
d)feedback –feed forward control 

[GATE-2006] 

Q.5 A plant with a transfer function 
2

s(s+3)
 is controlled by a PI controller

with pK =1  and iK 0≥  in a unity 
feedback configuration .The lowest 
value of iK  that ensures zero steady 
state error for a step change in the 
reference input is  
a) 0 b) 1/3
c) 1/2 d) 1

[GATE-2009] 

Q.6 Consider the control system shown 
in figure with feed forward action 
for rejection of a measurable 
disturbance d(t). The value of K for 
which the disturbance response at 
the output y(t) is zero mean, is 

GATE QUESTIONS(IN) 
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a) 1 b) −1
c) 2 d) −2

[GATE-2014]  
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Q.1  (c) 
Let the T.F of the compensator be 

cG (s)  
CLTF of the compensated system    

( ) ( )
( ) ( )

( )
( )

( )
( )

c

c c

cc c

G s
G s G s s s 1 G (s)

G s1 G s G s s(s 1)G (s)1
s s 1

+
= = =

+ +
+

+

Poles of the compensated system re 
given as s 1 j1,s 4= − ± = −  

Let ( ) c
c

K (s b)G s
(s a)

+
=

+
Characteristic equation 
( ) ( ) ( )cs s 1 s a K s b+ + + +

( ) ( ) ( )2 2 3 2s 1 1 s 4 s 1 a s = + + + + + 
( ) ( ) ( )2

c ca K s K b s 2s 2 s 4+ + + = + + +
3 2s 6s 10s 81 a= + + + +
( )c c6, a K 10,K b 8= + = =

c
8a 5, K 5,b 1.6
5

= = = =

( )c
5(s 1.6)G s

(s 5)
+

=
+

Q.2  (a) 
Given 

( ) 1m s e(s) 0.5 1
2s

  = +  
  

 

( ) ( )0.50.5 e s e s
s

 = + 
 

 

k 

As, Laplace transform of 

( ) I(s)i t dt
s

=∫

Q.3  (b) 

The given diagram can be reduced 
as  

Transfer function 

( ) 5
C(s) E(s) 1H s

0.5eD(s) D(s) 1
s

−= = =
+

E(s) s 2s
D(s) 0.5 0.5s (s 1)

= =
+ +

( ) ( )
2sE s D(s)

s 1
=

+

( )d t sin 0.2t ω 0.2= ⇒ =
For getting multiplying factor A 

ω 0.2

2sA
s 1 =

=
+

 

1 2 3 4 5 6 
(c) (a) (b) (b) (a) (d) 

ANSWER  KEY: 

EXPLANATIONS 
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( )2

2 jω 2 0.2A 0.3922
jω 1 1 0.2

×
= = =

+ +
 

A=0.40 
So, amplitude of output e(t) 

A initial amplitude= ×  
0.4 1 0.4= × =  

Q.4 (b) 
(PD controller can be used) 

Q.5 (a) 
( )
( )

( )

E s 1
R s ki 21 1

s s s 3

=
  + +    +  

( )
2

2

S (s 3)
S s 3 2(s ki)

+
=

+ + +

( ) ( )
( ) ( )

2

ss 2S 0 S 0

s s 31e lims.E s lims. .
s s s 3 2 s ki→ →

+
=

+ + +
0 ki 0= ∀ ≥  

Q.6 (d) 

( ) ( ) ( )
50 s 2 K 501 D s R(s)

(s 2) s 2 s
Y s

2
  + + + = +   + + +  

( ) ( ) ( ) ( ) ( ) ( )( )1 K.d s 50 RY s D s s Y S
s 2

 + − +
+

( ) ( ) ( )2 50
2

Y s D s   R
( 52)

ss K
s s
+ +  + + + 

i.e., s+2+K=0
K 2 0⇒ + =
K 2⇒ = −
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Q.1 A closed-loop system is shown in 
the given figure. The noise transfer 

function ( )
( ) ( )n

n

C s
[C s

N s
=  output 

corresponding to noise input N(s) is 
approximately  

a) 1 1 2
1

1 for | G (s)H (s) H (s) | 1
G(s)H (s)

<<

b) 1 1 2
1

1 for | G (s)H (s) H (s) | 1
H (s)

− >>

c) 
1 1 2

1 2

1 for | G (s)H (s) H (s) | 1
H (s)H (s)

− >>

d) 
1 1 2

1 2

1 for | G (s)H (s) H (s) | 1
G(s)H (s)H (s)

<<  

Q.2 A signal flow graph is shown in the 
given figure. The number of forward 
paths M and the number of 
individual loops P for this signal 
flow graph would be  

a) M =4 and P = 4      b) M=6 and P=4
c) M=4 and P=6 d) M=6 and P=6

Q.3 The mechanical system is shown in 
the given figure 

The system is described as 
a) ( ) ( ) ( ) ( )

2
1 1

2 12

d y t d y t
M B k y t y t

dt dt
+ = −    

b) ( ) ( ) ( ) ( )
2

2 2
2 12

d y t d y t
M B k y t y t

dt dt
+ = −  

c) ( ) ( ) ( ) ( )
2

1 1
1 22

d y t dy t
M B k y t y t

dt dt
+ = −    

d) ( ) ( ) ( ) ( )
2

2 2
1 22

d y t dy t
M B k y t y t

dt dt
+ = −    

Q.4 Consider the following block 
diagrams: 
a) 

b) 

c) 

d)

ASSIGNMENT QUESTIONS 
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Which of these block diagrams can 
be reduced to transfer function
( )
( )

1

1 2

C s G
R s 1 G G

=
−

? 

a) 1 and 3 b) 2 and 4
c) 1 and 4 d) 2 and 3

Q.5 Select the correct transfer function 
v0(s)/vi(s) from the following, for 
the given network. 

a) 
( )

2
s s 1+

b) 
( )

s
s 2+

c) 
( )

s
2s 1+

d) 
( )

2s
s 1+

Q.6 The number of forward paths and 
the number of non-touching loop 
pairs for the signal flow graph given 
in the figure are, respectively, 

a) 1, 3 b) 3, 2
c) 3, 1 d) 2, 4

Q.7 Which one of the following effects in 
the system is NOT caused by 
negative feedback? 
a) Reduction in gain
b) Increase in bandwidth
c) Increase in distortion
d) Reduction in output impedance

Q.8 The gain C(s)
R(s)

of the signal flow 

graph shown is 

a) 1 2 2 3

1 2 1 2 3 1 4

G G G G
1 G G H G G H G

+
+ + +

b) 1 2 2 3

1 3 1 2 3 1 4

G G G G
1 G G H G G H G

+
+ + −

c) 1 3 2 3

1 3 1 2 3 1 4

G G G G
1 G G H G G H G

+
+ + +

d) 1 3 2 3

1 3 1 2 3 1 4

G G G G
1 G G H G G H G

+
+ + −

Q.9 The overall gain C(s)
R(s)

of the block 

diagram shown is 

a) 1 2

1 2 1 2

G G
1 G G H H−

b) 1 2

2 2 1 2 1

G G
1 G H G G H− −

c) 1 2

2 2 1 2 1 2

G G
1 G H G G H H− +

d) 1 2

1 2 1 1 2 2

G G
1 G G H G G H− −

Q.10 The signal flow graph for a certain 
feedback control system is shown: 
Now consider the following set of 
equations for the nodes:  

1. x2 = a1x1 + a9x3

2. x3 = a2x2 + a8x4

3. x4 = a3x3 + a5x2

4. x5 = a4x4 + a6x2

Which of the above equations are 
correct? 
a) 1, 2 and 3 b) 1, 3 and 4
c) 2, 3 and 4 d) 1, 2 and 4
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Q.11 Which is the overall transfer 
function of the block diagram given? 

a) 1 2 2 3

2 1

G G G G
1 G H

+
+

b) 1 3 2 3

3 1

G G G G
1 G H

+
+

c) 1 2 2 3G G G G+ d) 1 3 2 3

2 3 1

G G G G
1 G G H

+
+

Q.12 For the feedback system shown in 
the figure above, which one of the 
following expresses the input-
output relation C/R of the overall 
system? 

a) G
1 FG GH− +

b) G
1 FG GH+ −

c) FG
1 FGH+

d) GH
1 FGH−

Q.13 The block diagram for a particular 
control system is shown in the 
figure. What is the transfer function 
C(s)/R(s) for this system? 

a) s a
s b
+
−

b) s a
s b
+
+

c) s b
s a
−
+

d) s b
s a
+
−

Q.14 Which one of the following is the 

transfer function Y(s)
X(s)

 for the block 

diagram given? 

a) 1 2

2 1 2 1 2

G G
1 H G G H G+ −

b) 1 2

2 1 2 1 2

G G
1 H G G H G− +

c) 1 1 2

2 1 2 1 2

H G G
1 H G G H G− +

d) 1 1 2

2 1 2 1 2

H G G
1 H G G H G+ −

Q.15 The transfer function for the 
diagram shown above is given by 
which one of the following? 

a) 1/(1 + sRC) b) sRC/(1 + sRC)
c) sRC/(1 – sRC)     d) 1 + sRC

Q.16 For what value of K, are the two 
block diagrams as shown above 
equivalent? 

a) 1 b) 2
c) (s + 1) d) (s + 2)

Q.17 Consider the following statements 
with regards to signal flow graph: 
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1. The number of loops are 3.
2. The number of loops are 2.
3. The number of forward paths

are 3.

4. C
R

 ratio is 
81
40

5. C
R

 ratio is 
81
28

Which of these statements are 
correct? 
a) 1, 3, 4 and 5 b) 1, 3 and 4
c) 2, 3 and 4 d) 3, 4 and 5

Q.18 The transfer function C(s)
R(s)

for the 

system shown above is 

a) 1

2

G H
1 GH

+
+

b) 2

1

G H
1 GH
+
+

c) 2

2

H
1 GH+

d) 2

1

GH
1 GH+

Q.19 The system transfer function for the 
block diagram shown is 

a) 1 2

2 2 1 1

G G
1 G H G H− +

b) 1 2

1 1 2 1

G G
1 H G G H− +

c) 1 2 1

2 1 1 1

G G H
1 G H G H+ +

d) 1 2 1

2 2 1 1

G G H
1 G H G H+ +

Q.20 Consider the following statements: 
1. The effect of feedback is to

reduce the system error.
2. Feedback increases the gain of

the system in one frequency
range but decreases in another.

3. Feedback can cause a system
that is originally stable to
become unstable.

Which of these statements are 
correct? 
a) 1, 2 and 3 b) 1 and 2
c) 2 and 3 d) 1 and 3

Q.21 For the signal flow diagram shown 
in the given figure, the 
transmittance between x2 and x1 is 

a) rsu efh
1 st 1 fg

+
− −

b) rsu efh
1 fg 1 st

+
− −

c) efh rsu
1 ru 1 eh

+
− −

d) rst rsu
1 eh 1 st

+
− −

Q.22 Consider the following amplifier 
with negative feedback: 
If the closed-loop gain of the 
amplifier is +100, the value B will be 

a) 3109 −×−  b) 3109 −×+
c) 31011 −×− d) 31011 −×+

Q.23 For the given system, how can the 
steady state error produced by step 
disturbance be reduced? 
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a) By increasing dc gain of G1(s) G2

(s)
b) By increasing dc gain G2 (s)
c) By increasing dc gain of G1 (s)
d) By removing the feedback

Q.24 For the system given below, the 
feedback does not reduce the 
closed-loop sensitivity due to 
variation of which one of the 
following? 

a) K b) A
c) Kα d) β  

Q.25 Which one of the following 
represents the linear mathematical 
model of the physical system shown 
in the above figure? 

a) m
2

2

d x(t)
dt

+ b dx(t) kx(t) f (t)
dt

+ =

b) m
2

2

d x(t)
dt

+ b dx(t) kx(t)
dt

+ = 0

c) m
2

2

d x(t)
dt

+b dx(t) kx(t) f (t) 0
dt

+ + =

d) m
2

2

d x(t)
dt

+ b dx(t) kx(t) f (t)
dt

− −

Q.26 A linear time invariant system, 
initially at rest when subjected to a 
unit step input gave to a response 
c(t)=te-t (t 0).≥  the transfer function 
of the system is 

a) 
( )2

s
s 1+

b) 
( )2

1
s s 1+

c) 
( )2

1
s 1+

d) 
( )

1
s s 1+

Q.27 In closed loop control system, what 
is the sensitivity of the gain of the 
overall system, M to the variation in 
G?  

a) 1
1 G(s)H(s)+

b) 1
1 G(s)+

c) G(s)
1 G(s)H(s)+

d) G(s)
1 G(s)+

Q.28 Which one of the following is the 
transfer function of a linear system 
whose output is t2e-t for a unit step 
input? 

a) 3

s
(s 1)+

  b) 3

2s
(s 1)+

c) 2

1
s (s 1)+

d) 2

2
s(s 1)+

Q.29 Which of the following are the 
characteristics of closed-loop system? 
1. It does not compensate for

disturbances
2. It reduces the sensitivity of plant

parameter variations
3. It does not involve output

measurements
4. It has the ability to control the

system transient response.
Select the correct answer using the 
codes given below: 
a) 1 and 4 b) 2 and 4
c) 1 and 3 d) 2 and 3

Q.30 The unit step response of a 
particular control system is given by 
c(t)=1-10e-t. Then its transfer 
function is 

a) 10
s 1+

b) 
1s
9-s
+

c) 
1s

9s-1
+

d) 
1)s(s

9s-1
+
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Q.31 [ ]a jb− ± are the complex conjugate
roots of the characteristics equation 
of a second order system. Its 
damping coefficient and natural 
frequency will be respectively 

a) 
2 2

b
a b+

 and 2 2a b+

b) 
2 2

b
a b+

 and 2 2a b+  

c) 
2 2

a
a b+

 and 2 2a b+

d) 
2 2

a
a b+

 and 2 2a b+  

Q.32 A unity feedback control system has 
a forward path transfer function

( ) ( )
( )2

10 1 4s
G s

s 1 s
+

=
+

If the system is subjected to an input 

r(t)=1+ t + ( )
2t t 0 ,
2

≥ the steady-

state error of the system will be 
a) zero b) 0.1
c) 10 d) infinity

Q.33 In the system shown in the given 
figure, r(t)=1+2t ( 0≥t ). The steady-
state value of the error e(t) is equal 
to  

a)Zero b)2/10 
c)10/2  d)infinity 

Q.34 A second order control system is 
defined by the following differential 
equation: 

( ) ( ) ( ) ( )
2

2

d c t dc t
4 8 16c t 16u t

dt dt
+ + =

The damping ratio and natural 
frequency for this system are 
respectively. 
a) 0.25 and 2 rad/s

b) 0.50 and 2 rad/s
c) 0.25 and 4 rad/s
d) 0.50 and 4 rad/s

Q.35 The open loop transfer function of a 
unity feedback system is given by 

( )
K .

s s 1+
 if the value of gain K is such

that the system is critically damped, 
the closed loop poles of the system 
will lie at 
a) -0.5 and -0.5 b) j0.5±
c) 0 and -1 d) 0.5 ± j 0.5

Q.36 Given the transfer function 

2

121G(s)=
s +13.2s+121

of a system. 

Which of the following 
characteristics does it have? 
a) Overdamped and settling time 1.1
b) Underdamped and settling time

0.6s
c) Critically damped and settling

time 0.8s
d) Underdamped and settling time

0.707s

Q.37 The steady state error resulting 
from an input r(t) = 2 + 3t + 4t2 for 
given system is 

a) 2.4 b) 4.0
c) Zero d) 3.2

Q.38 The unit impulse response of a 
second order system is 1/6e-0.8t sin 
(0.6t). Then the natural frequency 
and damping ratio of the system are 
respectively? 
a) 1 and 0.6 b) 1 and 0.8
c) 2 and 0.4 d) 2 and 0.3

Q.39 A second order control system has 
M(jω) =

2

100 .
100 10 2j−ω + ω

It Mp(peak 

magnitude) is 
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a) 0.5 b) 1
c) 2 d) 2

Q.40 The open-loop transfer function for 
unity feedback system is given by

)201)(51(
)1.01(5

sss
s
++

+

Consider the following statements: 
1. The steady-state error for a step

input of magnitude 10 is equal to
zero.

2. The steady-state error for a
ramp input of magnitude 10 is 2.

3. The steady-state error for an
acceleration input of magnitude
10 is infinite.

Which of the statements given 
above are correct? 
a) Only 1 and 2 b) Only 1 and
c) Only 2 and 3 d) 1, 2 and 3

Q.41 For a second order system, natural 
frequency of oscillation is 10 rad/s 
and damping ratio is 0.1. What is the 
2% settling time? 
a) 40s b) 10s
c) 0.4s d) 4s

Q.42 For a unity feedback control system 
with forward path transfer function 

G(s) = K
s 5+

, what is error transfer 

function we(s) used for 
determination of error coefficients? 

a) K
s 5+

  b) K
s K 5+ +

c) s 5
s K 5

+
+ +

d) K(s 5)
s K 5

+
+ +

Q.43 The unit step response of a system 
is [1 – e-t (1 + t)] u (t). What is the 
nature of the system in turn of 
stability? 
a) Unstable b) Stable
c) Critically stable d) Oscillatory

Q.44 Consider the unity feedback system 
as shown. The sensitivity of the 
steady state error to change in 

parameter K and parameter a with 
ramp inputs are respectively 

a) 1, -1 b) -1, 1
c) 1, 0 d) 0, 1

Q.45 The unit impulse response of a 
system having transfer function 

K
s +α

is shown. The value of α is 

a) 1t b)
1

1
t

c) 2t d)
2

1
t

Q.46 Match List I (system G(s)) with List 
II (Nature of Response) and select 
the correct answer using the codes 
given below the lists: 
List I (System G(s)) 

2

400A.
s 12s 400+ +

2

900B.
s +90s+900

2

225C.
s 30s 225+ +

6250
625. 2 ++ ss

D

List II (Nature of Response) 
1. Undamped
2. Critically damped
3. Underdamped
4. Overdamped
Codes: 

A B C D 
a) 3 1 2 4 
b) 2 4 3 1 
c) 3 4 2 1 
d) 2 1 3 4 

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



Q.47 Which one of the following 
expresses the time at which second 
peak in step response occurs for a 
second order system? 

a) 
2

n 1
π

ω − ς
b) 

2
n

2
1
π

ω − ς

c) 
21

3
ςω

π
−n

d) 
21 ς

π
−

Q.48 What is the value of k for a unity 

feedback system with G(s) = k
s(1+s)

to have a peak overshoot of 50%? 
a) 0.53 b) 5.3
c) 0.6 d) 0.047

Q.49 The unit step response of a second 
order system is 1 – e-5t – 5t e-5t 
Consider the following statements: 
1. The undamped natural frequency

5 rad/s.
2. The damping ratio is 1.
3. The impulse response is 25 t e-5t

Which of the statements given 
above is/are correct? 
a) Only 1 and 2 b) Only 2 and 3
c) Only 1 and 3 d) 1, 2 and 3

Q.50 The damping ratio and natural 
frequency of a second order system 
are 0.6 and 2 rad/s respectively.  
Which one of the following 
combinations gives the correct 
values of peak and settling time, 
respectively for the unit step 
response of the system? 
a) 3.33s and 1.95s
b) 1.95s and 3.33s
c) 1.95s and 1.5s
d) 1.5s and 1.95s

Q.51 Consider the following system 
shown in the diagram: 
In the system shown in the below 
diagram x(t) = sin t. 
What will be the response y(t) in the 
steady state? 

a) sin(t 45 / 2)− °    b) osin(t 45 ) / 2+

c) t2e sin t− d) sin t cos t−

Q.52 A unity feedback control system has 
a forward loop transfer function as 

e Ts .
[s(s 1)]

−
+

Its phase value will be zero 

at frequency ω1. Which one of the 
following equations should be 
satisfied by ω1? 
a) ω1 = cot (Tω1)   b) ω1 = tan (Tω1)
c) Tω1 = cot (ω1)   d) Tω1 = tan (ω1

Q.53 The open loop transfer function of a 
unity feedback control system is 

given by G(s) = k
s(s 1)+

. If gain k is 

increased to infinity, then damping 
ratio will tend to become 
a) zero b) 0.707
c) Unity d) Infinite

Q.54 The impulse response of a second 
order under-damped system starting 
from rest is given by: C(t) =12.5 e-6t 
sin8t; t≥0. 
What are the values of natural 
frequency and damping factor of the 
system, respectively? 
a) 10 units and 0.6
b) 10 units and 0.8
c) 8 units and 0.6
d) 8 units and 0.8

Q.55 Which one of the following is the 
most likely reason for large 
overshoot in a control system? 
a) High gain in a system
b) Presence of dead time delay in a

system
c) High positive correcting torque
d) High retarding torque

Q.56 In the time domain analysis of 
feedback control systems which one 
pair of the following is not correctly 
matched? 
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a) Under damped: Minimizes the
effect of nonlinearities

b) Dominant: Transients die 
out more rapidly

c) Far away poles to the left half of
s-plane: Transients die out more
rapidly

d) A pole near to the left of
dominant: Magnitude of transient
is small complex poles and near
a zero

Q.57 A second order system has a natural 
frequency of oscillations of 3 
rad/sec and damping ratio of 0.5. 
What are the value of resonant 
frequency and resonant peak of the 
system? 
a) 1.5 rad/sec and 1.16
b) 1.16 rad/sec and 1.5
c) 1.16 rad/sec and 2.1
d) 2.1 rad/sec and 1.16

Q.58 Consider the following: 
1. Rise time
2. Setting time
3. Delay time
4. Peak time
What is the correct sequence of the 
time domain specifications of a 
second order system in the 
ascending order of the values? 
a) 2 – 4 – 1 – 3 b) 3 – 4 – 1 – 2
c) 2 – 1 – 4 – 3 d) 3 – 1 – 4 – 2

Q.59 A unity feedback system with open 

loop transfer function of 20
s(s 5)+

is 

excited by a unity step input. How 
much time will be required for the 
response to settle within 2% of final 
desired value? 
a) 0.25 sec b) 1.60 sec
c) 2.40 sec d) 4.00 sec

Q.60 Given a unity feedback system with 

G(s) = K ,
s(s 4)+

the value of K for

damping ratio of 0.5 is 
a) 1 b) 16

c) 4 d) 2

Q.61 The open-loop transfer function 
G(s) of a unity feedback control 

system is 
1)s(s

1
+

. The system is 

subjected to an input r(t) sin t. The 
steady state error will be 
a) zero b) 1

c) 





 π
−

4
tsin2

         
d) 






 π
+

4
tsin2

 

Q.62 A third-order system is 
approximated to an equivalent 
second order system. The rise time 
of this approximated lower order 
system will be 
a) Same as original system for any

input. 
b) Smaller than the original system

for any input. 
c) Larger than the original system

for any input 
d) Large or smaller depending on

the input 

Q.63 A system has a single pole at origin. 
Its impulse response will be 
a) Constant
b) Ramp
c) Decaying exponential
d) Oscillatory

Q.64 Which one of the following 
statements is correct? 
A second order system is critically 
damped when the roots of its 
characteristic equation are 
a) Negative, real and unequal
b) Complex conjugates
c) Negative, real and equal
d) Positive, real and equal

Q.65 An underdamped second order 
system with negative damping will 
have the two roots 
a) On the negative real axis as real

roots. 
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b) On the left hand side of complex
plane as complex roots.

c) On the right hand side of
complex plane as complex
conjugates

d) On the positive real axis as real
roots

Q.66 How can the steady-state error in a 
system be reduced? 
a) By decreasing the type of system
b) By increasing system gain
c) By decreasing the static error

constant
d) By increasing the input

Q.67 A control system whose step 
response is –0.5(1 + e-2t) is cascaded 
to another control block whose 
impulse response is e-t. What is the 
transfer function of the cascaded 
combination? 

a) 1
(s 1)(s 2)+ +

b) 1
s(s 1)+

c) 1
s(s 2)+

d) 0.5
(s 1)(s 2)+ +

Q.68 A diaphragm type pressure sensor 
has two poles as shown in the figure 
above. The zeros are at infinity. 
What is its steady state deformation 
for a unit step input pressure? 

a) 0.25 b) 0.5
c) 0.707 d) 1

Q.69 What is the value of the damping 
ratio of a second order system when 
the value of the resonant peak is 
unity? 

a) 2 b) Unity
c) 1/ 2 d) Zero

Q.70 Consider a second order all-pole 
transfer function model, if the 
desired settling time (5%) is 0.60 
sec and the desired damping ratio 
0.707, where should the poles be 
located in s-plane? 
a) – 5 j4 2± b) 5 j5− ±

c) 4 j5 2− ± d) 4 j7− ±

Q.71 The closed loop system shown 
above becomes marginally stable if 
the constant K is chosen to be 

a) 10 b) 20
c) 30 d) 40

Q.72 The characteristic equation of a 
system is given by

4 3 23s 10s 5s 2 0+ + + = . This system is 
a) Stable
b) Marginally stable
c) Unstable
d) Neither (a) (b) nor (c)

Q.73 For which of the following values of 
k, the feedback system shown in the 
figure is stable? 

a) k > 0 b) k < 0
c) 0 < k < 42 d) 0 < k < 60

Q.74 A feedback control system is shown 
in the given figure. The system is 
stable for all positive values of K, If 
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a) T = 0 b) T <0
c) T > 1 d) 0<T<1

Q.75 Consider the following equation 
2s4 + s3 + 3s2 + 5s +10 = 0 
How many roots does this equation 
have in the right half of s-plane? 
a) One b) Two
c) Three d) Four

Q.76 If the poles of a system lie on the 
imaginary axis, the system will be: 
a) Stable
b) Conditionally stable
c) Marginally stable
d) Unstable

Q.77 The characteristic equation of a 
feedback control system in given by: 
s3 + 6s2 + 9s + 4 = 0 
What is the number of roots in the 
left-half of the s-plane? 
a) Three b) Two
c) One d) Zero

Q.78 The system having characteristic 
equation: s4 + 2s3 + 3s2 + 2s + k = 0 
is to be used as an oscillator. What 
are the values of k and the 
frequency of oscillation ω? 
a) k = 1 and ω= 1 r/s
b) k = 1 and ω  = 2 r/s
c) k = 2 and ω= 1r/s
d) k =2 and ω= 2 r/s

Q.79 What is the range of K for which the 
open loop transfer function G(s) = 

2

K
s (s a)+

represents an unstable 

closed loop system? 
a) K > 0 only b) K = 0 only
c) K < 0 only d) - ∞< K <∞

Q.80 The closed loop transfer function of 

a control system is K
s(s 1)(s 5) K+ + +

. 

What is the frequency of the 
sustained oscillations for marginally 
stable condition? 

a) 5 rad / s b) 6  rad / s
c) 5 rad / s d) 6 rad / s

Q.81 The characteristic equation of a 
control system is given as: 
s4 + 8s3 + 24s2 + 32s + K = 0 
What is the value of K for which the 
system is unstable? 
a) 10 b) 20
c) 60 d) 100

Q.82 The characteristics equation for a 
third-order system is: 
q(s) = a0s3 + a1s2 + a2s + a3 = 0. 
For the third-order system to be 
stable, besides that all the 
coefficients have to be positive, 
which one of the following has to be 
satisfied as a necessary and 
sufficient condition? 
a) 0 1 2 3a a a a≥ b) 1 2 0 3a a a a≥
c) 2 3 1 0a a a a≥ d) 0 3 1 2a a a a≥

Q.83 Which one of the following is 
correct? 
A unity feedback system with 
forward path transfer function G(s) 

= 
1 2

K
s(1 sT )(1 sT )+ +

is stable provided 

the value of K is given by 

a) K < 1 2

1 2

T T
T T
+ b) K< 1 2

1 2

T T
T T+

c) K > 1 2

1 2

T T
T T
+ d) K> 1 2

1 2

T T
T T+

Q.84 The open-loop transfer function of 
unity feedback control system is 

ba0,
b)a)(ss(s

KG(s) ≤<
++

=

The system is stable if 

a)
ab

b)(aK0 +
<< b) ab0 K

(a b)
< <

+

c) b)ab(aK0 +<<    d) a0 K (a b)
b

< < +

Q.85 The characteristic equation of a 
system is given as s3 +25s2 +10s +50 
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=0. What is the number of roots in 
the right half s-plane and on the jω  
axis, respectively? 

 a) 1, 1   b) 0, 0   
c) 2, 1   d) 1, 2 

 
Q.86 The given characteristic polynomial 

4 2 2s s 2s 2s 3 0+ + + + =  has 
 a) Zero root in RHS of s-plane   

b) One root in RHS of s-plane  
 c) Two roots in RHS of s-plane   

d) Three roots in RHS of s-plane 
 
Q.87 Which one of the following 

characteristic equations can result 
in the stable operation of the 
feedback system?  

 a) 3 2s 4s s 6 0+ + − =    
b) 3 2s s 5s 6 0− + + =  

 c) 3 2s 4s 10s 11 0+ + + =   
d) 4 3 2s s 2s 4s 6 0+ + + + =  

  
Q.88 The characteristic equation of 

a control system is given by  
 s6 + 2s5 + 8s4 + 12s3 + 20s2 + 16s + 16 

= 0. The number of the roots of the 
equation which lie on the imaginary 
axis of s-plane is 

 a) Zero   b) 2   
c) 4    d) 6  

 
Q.89 Consider the unity feedback system 

with G(s) = 
2

K
(s +2s+2)(s+2)

. The 

system is marginally stable. What is 
the radian frequency of oscillation? 

 a) 2    b) 3    
c) 5    d) 6  

 
Q.90 The open – loop transfer function of 

a unity feedback control system is 
given by G(s) = K e-Ts where K and T 
are variables and are greater than 
zero. The stability of the closed-loop 
system depends on 

 a) K only b) Both K and T  
c) T only d) Neither K nor T 

 
Q.91 Which of the following may result in 

instability problem? 
 a) Large error         b) High selectivity 

c) High gain        d) Noise 
 
Q.92 For the block diagram shown in the 

given figure, the limiting values of K 
for stability of inner loop is found to 
be X<K<Y. the overall system will be 
stable if and only if  

 
a) 4X<K<4Y   b) 2X<K<2Y 

 c) X<K<Y  d) X YK
2 2
< <

 
 

Q.93 The loop transfer function of a 
system is given by 

2K(s 10) (s 100)G(s)H(s)
s(s 25)
+ +

=
+

 

 The number of loci terminating at 
infinity is 

 a) 0   b) 1   
c) 2   d) 3 

 
Q.94 A control system has G(s)H(s)= 

K/[s(s + 4) (s2 + 4s + 20)](0< K <∝ ).  
What is the number of breakaway 
points in the root locus diagram? 
a) One   b) Two  
c) Three  d) Zero 

 
Q.95 The characteristic equation of a 

control system is given by s(s + 4)(s2 

+ 2s + 2) + k(s + 1) = 0. What are the 
angles of the asymptotes for the root 
loci for k≥0 ? 

 a) 60o, 180o, 300o    b) 0o, 180o, 300o  
 c) 120o, 180o, 240o  d) 0o, 120o, 240o 
 
Q.96 The open loop transfer function of a 

feedback system has m poles and n 
zeros  (m > n) 
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Consider the following statements 
1. The number of separate root loci

is m.
2. The number of separate root loci

is n.
3. The number of root loci

approaching infinity is (m – n)
4. The number of root loci

approaching infinity is (m + n)
Which of the statements given 
above are correct? 
a) 1 and 4 b) 1 and 3
c) 2 and 3 d) 2 and 4

Q.97 The characteristic equation of a 
feedback control system is given by 
s3 + 5s2+(K+6)s+K=0. In the root loci 
diagram, the asymptotes of the root 
loci for large ‘K’ meet at a point in 
the s-plane whose coordinates are 
a) (2, 0) b) (-1, 0)
c) (-2, 0) d) (-3, 0)

Q.98 The characteristic equation of a 
linear control system is s2+5Ks+10=0. 
The root –loci of the system for 
0<K<∞ is  
a) 

b) 

c) 

d) 

Q.99 The open loop transfer function of a 
closed loop control system is given 
as: 

2

K(s 2)G(s)H(s)
s(s 1)(s 4)

+
=

+ +
.What are 

the number of asymptotes and the 
centroid of the asymptotes of the 
root-loci of closed loop system? 

a) 





− 0,

3
7;3 b) )0,2(;2−

c) 





 − 0,

3
7;3  d) )0,2(;2 −

Q.100 Loop transfer function of unity 
feedback system is G(s) = 

2

2

K(s 64) .
s(s 16)

+
+

The correct root locus 

diagram for the system is 
a) 

b) 

c) 
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d) 

Q.101 An open loop transfer functions is 
given by

2

k(s 1)G(s)H(s) .
s(s 2)(s 2s 2)

+
=

+ + +
It has 

a) One zero at infinity
b) Two zeros at infinity
c) Three zeros at infinity
d) Four zeros at infinity

Q.102 Which of the following is the open 
loop transfer function of the root 
loci shown in the figure? 

a)
)Ts(s

K
2

1+
         b) 2

21 )T)(sT(s
K
++

c) 3T)(s
K
+

         d) 
)1(sTs

K

1
2 +

Q.103 A control system has 

)4s)(3s(s
)1s(K)s(H)s(G
++

+
=  

Root locus of the system can lie on 
the real axis 
a) Between s = -1 and s = -3
b) Between s = 0 and s = -4
c) Between s = -3 and s = -4
d) Towards left of s = -4

Q.104 The characteristic equation of a 
control system is  
s5+15s4+85s3+225s2+247s + 120 = 0 
What are the number of roots of the 
equation which lie to the left of the 
line s + 1 = 0? 
a) 2 b) 3

c) 4 d) 5

Q.105 For a given unity feedback system 

with G(s) = k(s 3) ,
s(s 1)(s 2)(s 5)

+
+ + +

what 

is the real axis intercept for root 
locus asymptotes? 
a) 2/3 b) 1/4
c) –5/3 d) –3/2 

Q.106 How many number of branches the 
root loci of the equation s(s + 2)(s + 
3) + K(s + 1) = 0 have?
a) Zero b) One
c) Two d) Three

Q.107 The addition of open loop zero pulls 
the root-loci towards: 
a) The left and therefore system

becomes more stable 
b) The right and therefore system

becomes unstable 
c) Imaginary axis and therefore

system becomes marginally stable 
d) The left and therefore system

becomes unstable 

Q.108 The characteristic equation of a 
control system is given as: 

0
)22)(4(

)1(1 2 =
+++

+
+

ssss
sK

For large values of s, the root loci for 
K ≥  0 are asymptotic to asymptotes, 
where do the asymptotes intersect 
on the real axis? 

a) 5
3

b) 2
3

c) 5
3

− d) 4
3

Q.109 Consider the equation s2 + 2s + 2 + 
K(s+2)=0. Where do the roots of this 
equation break on the root loci plot? 
a) – 3.414 b) – 2.414 
c) – 1.414 d) – 0.414 

Q.110 A system has fourteen poles and two 
zeros. The slope of its highest 
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frequency asymptote in its 
magnitude plot is 
a)-40 dB/decade 
b)-240 dB/decade 
c)-280 dB/decade 
d)-320 dB/decade 

Q.111 The phase angle of the system 

( ) 2

s 5G s
s 4s 9

+
=

+ +
varies between 

a) 00 and 900 b) 00 and -900

c) 00 and -1800 d) -900 and -1800

Q.112 The Bode phase angle plot of a 
system is shown in the figure. The 
type of the system is  

a) 0 b) 1
c) 2 d) 3

Q.113 A minimum phase unity feedback 
system has a Bode plot with a 
constant slope of -20 db/ decade for 
all frequencies. What is the value of 
the maximum phase margin for the 
system? 
a) 0o b) 90o

c) -90o d) 180o

Q.114 At which frequency does the Bode 
magnitude plot for the function K/s2 
have gain crossover frequency? 
a) ω=0 r/s b) ω= K r/s
c) ω=K r/s d) ω= K2 r/s

Q.115 Which one of the following is 
correct? 
The slope of the asymptotic Bode 
magnitude plot is integer multiple of 
a) ± 40 db/ decade
b) ± 12 db/ octave
c) ±  6 db/ octave
d) ±  3 db/ octave

Q.116 What is the initial slope of Bode 
magnitude plot of a type – 2 system? 
a) – 20 db/decade    
b)+20 db/decade 
c) −40 db/decade
d)+40 db/decade 

Q.117 What is the error in magnitude at 
the corner frequency for an 
asymptotic Bode magnitude plot for 
the term (1 + s n)±τ ? 
a) ±  20 n db b) ±  6 n db
c) ±  3 n db d) ±  1 n db

Q.118 Consider the following statements 
regarding the frequency response of 
a system as shown: 
1. The type of the system is one
2. ω3= static error coefficient

(numerically)

3. ω2 =
2

31 ω+ω

Select the correct answer using the 
codes given below: 
a) 1, 2 and 3 b) 1 and 2
c) 2 and 3 d) 1 and 3

Q.119 In the Bode plot of a unity feedback 
control system, the value of phase 
angle of G(jω) is –900 at the gain 
cross over frequency of the Bode 
plot, the phase margin of the system 
is: 
a) - 1800 b) + 1800

c) - 900 d) + 900

Q.120 What are the gain and phase angle of 
a system having the transfer 
function G(s)=(s+1) at a frequency 
of 1 rad/sec? 
a) 0.41 and 00 b) 1.41 and 450

c) 1.41 and – 450 d) 2.41 and 900
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Q.121 Consider the following statements in 
connection with frequency domain 
specifications of a control system: 
1. Resonant peak and peak 

overshoot are both functions of 
the damping ratio ξ only. 

2.  The resonant frequency rω = nω
for ξ > 0.707. 

3.  Higher the resonant peak, higher 
is the maximum overshoot of the 
step response. 

 Which of the statements given 
above are correct? 

 a) 1 and 2 only b) 2 and 3 only 
 c) 1 and 3 only d) 1, 2 and 3 
 
Q.122 A minimum phase transfer function 

has 
a) poles in the right half of s-plane    
b)  zeros in the right half of s-plane 
c)  poles in the left half of s-plane 

and zeros in the right half of s-
half 

d)  no poles or zeros in the right half 
of s-plane or on the j ω-axis 
excluding the origin 

 
Q.123 Which of the following transfer 

functions is/are minimum phases 
transfer function(s). 

 1. 1
(s 1)−

 2. (s 1)
(s 3)(s 4)

−
+ +

  

 3. (s 2)
(s 3)(s 4)

+
+ −

 

 Select the correct answer using the 
code given below: 

 a) 1 and 3  b) 1 only  
c) 2 and 3  d) None 
 

Q.124 The transfer function of a system is 
1 s
1 s
−
+

. The system is then which one 

of the following? 
 a) Non-minimum phase system  

b) Minimum phase system 
 c) Low-pass system   

d) second-order system 

Q.125 The low frequency and high 
frequency asymptotes of Bode 
magnitude plot are respectively 

60− db/decade and 40− db/decade. 
What is the type of the system? 

 a) Type 0  b) Type I  
c) Type II  d) Type III 

 
Q.126 The poles and zeros of an all-pass 

network are located in which part of 
the s-plane? 
a) Poles and zeroes are in the right 

half of s-plane 
b)  Poles and zeroes are in the left 

half of s-plane 
c)  Poles in the right half and zeroes 

in the left half of s-plane 
d)  Poles in the left half and zeroes 

in the right half of s-plane 
 
Q.127 Consider the following statements 

regarding the asympotic Bode plots 
used for frequency response 
analysis: 

 1. The deviation of the actual 
magnitude response for a zero on 
real axis is 3 dB at the corner 
frequency. 

 2. The phase angle for a pair of 
complex conjugate poles at 
undamped frequency depends upon 
the value of damping ratio 

 Which of the statements given 
above is/ are correct 

 a) Only 1          b) Only 2  
c) Both 1 and 2       d) Neither 1 nor 2 

 
Q.128 For the Bode plot of the system G(s) 

=
133.266.0

10
2 ++ ss

 the corner 

frequencies are: 
 a) 0.66 and 0.33        b) 0.22 and 2.00 
 c) 0.30 and 2.33       d) 0.50 and 3.00 
 
Q.129 Consider the following Nyquist plots 

of different control systems: 
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Which of these plot(s) represents 
(s) a stable system? 
a) 1 alone b) 2, 3 and 4
c) 1, 3 and 4 d) 1, 2 and 4

Q.130 The transfer function of a certain 

system is given by ( ) ( )
sG s .

1 s
=

+
The Nyquist plot to the system is 
a) 

b) 

c) 

d) 

Q.131 The Nyquist plot of a servo system is 
shown in the figure-I. the root loci 
for the system would be 
a) 

b) 

c) 

d) 

Q.132 If the Nyquist plot cuts the negative 
real axis at a distance of 0.4, then 
the gain margin of the system is 
a) 0.4 b) -0.4
c) 4% d) 2.5

Q.133 Consider the Nyquist diagram for 
given KG(s) H(s). The transfer 
function KG(s)H(s) has no poles and 
zeros in the right half of plane. If the 
(-1+j0) point is located first in 
region I and then in region II, the 
change in stability of the system will 
be from 
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a) Unstable to stable
b) Stable to stable
c) Unstable to unstable
d) Stable to unstable

Q.134 The Nyquist plot of a unity feedback 
system having open loop transfer 

function K(s 3)(s 5)G(s)
(s 2)(s 4)

+ +
=

− −
for K 

= 1 is as shown below. For the 
system to be stable, the range of 
values of K is 

a) 0 < K < 1.33 b) 0 < K <1/1.33
c) K > 1.33 d) K > 1/1.33

Q.135 The Nyquist plot of a control system 
is shown below. For this system, 
G(s) H(s) is equal to 

a)
1

K
s(1 sT )+

b) 2
1

K
s (1 sT )+

c) 3
1 2

K
s (1 sT )(1 sT )+ +

d) 2
1 2

K
s (1 sT )(1 sT )+ +

Q.136 Nyquist plot shown in the given 
figure is for a type 

a) Zero system b) One system
c) Two system d)Three system

Q.137 The open loop transfer function of a 
unity feedback control system is 
given as 

)sT)(1sTs(1
1(s)G

21 ++
= . The 

phase crossover frequency and the 
gain margin are, respectively, 

a) 1 2

1 21 2

T T1  and 
T TT T
+

b) 1 2
1 2

1 2

T TT T  and 
T T
+

c) 1 2

1 21 2

T T1  and 
T TT T +

d) 1 2
1 2

1 2

T TT T  and 
T T+

Q.138 The Nyquist plot shown, matches 
with the transfer function 

a) 3

1
(s 1)+

b) 2

1
(s 1)+

c) 2

1
(s 2s 2)+ +

d) 1
(s 1)+
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Q.139 The forward path transfer function 
of a unity feedback system is given 

by 2)s1(
1)s(G
+

=

What is the phase margin for this 
system? 
a) rad−π b) 0rad
c) / 2radπ d)  radπ

Q.140 What is the gain margin of a system 
when the magnitude of the polar 
plot at phase cross over is ‘a’? 
a) 1/a b) –a 
c) Zero d) a

Q.141 A system with gain margin close to 
unity or a phase margin close to 
zero is  
a) Relatively stable b) Oscillatory
c) Stable d) Highly stable

Q.142 The state diagram of a system is 
shown in the given figure: 

The system is 
a) Controllable and observable
b) Controllable but not observable
c) Observable but not controllable
d) Neither controllable nor 

observable

Q.143 The state-variable description of a 
linear autonomous system is X&=AX
where X is a state vector and 

0 2
A

2 0
 

=  
 

. 

The poles of the system are located 
at 
a) -2 and +2 b) -2j and +2j
c) -2 and -2 d) +2 and +2

Q.144 A particular control system is 
described by the following state 
equations: 

0 1 0
X X U

2 3 1
   

= +   − −   
& and 

[ ]Y 2 0 X
The transfer function of this system 
is: 

a) ( )
( ) 2

Y s 1
U s 2s 3s 1

=
+ +

b) ( )
( ) 2

Y s 2
U s 2s 3s 1

=
+ +

c) ( )
( ) 2

Y s 1
U s s 3s 2

=
+ +

d) ( )
( ) 2

Y s 2
U s s 3s 2

=
+ +

Q.145 The state-space representation in 
phase-variable form for the transfer 

function ( ) 2

2s 1G s
s 7s 9

+
=

+ +
 is

a) [ ]
. 0 1 0
x x u; y 1 2 x

9 7 1
   

= + =   − −   

b) [ ]
. 1 0 0
x x u; y 0 1 x

9 7 1
   

= + =   − −   

c) [ ]
. 9 0 0
x x u; y 2 0 x

0 7 1
−   

= + =   −   

d) [ ]
. 9 7 0
x x u; y 1 2 x

1 0 1
−   

= + =   
   

Q.146 Let 
1 2 0

X X
0 1 1
   

= +   
   

&

[ ]Y b 0 X=
Where b is an unknown constant. 
This system is 
a) Observable for all values of b
b) Unobservable for all values of b
c) Observable for all non-zero

values of b
d) Unobservable for all non-zero

values of b
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Q.147 The state-space representation of a 
system is given by T 

 1 0 1 1
0 2 0 1X X UandY X−

−     = + =     
&  

 Then the transfer function of the 
system is 

 a) 2

1
s 3s 2+ +

  b) 1
s 2+

 

 c) 2

s
s 3s 2+ +

  d) 1
s 1+

 

 
Q.148 A linear time-invariant system is 

described by the following dynamic 
equation: 

 ( ) ( ) ( )dx t
Ax t Bu t

dt
= +  

 ( ) ( )y t Cs t=  
 where 

[ ]0 1 0
A ,B ,C 1 1

2 3 1
   

= = =   − −   
 

 The system is 
a) Both controllable and observable 
b) Controllable but unobservable 
c) Observable but uncontrollable   
d) Both uncontrollable and 

unobservable 
 

Q.149 What is represented by state 
transition matrix of a system? 

 a) Free response  
b) Impulse response  
c) Step response  
d) Forced response 

 
Q.150 The system matrix of a continuous 

time system is given by A = 

.
53

10








−−

 Then the characteristic 

equation is  
 a) s2 + 5s + 3 = 0       b) s2 – 3s – 5 = 0 
 c) s2 + 3s + 5 = 0       d) s2 + s + 2 = 0 
 

Q.151 Let ux
b

x 







+








=

•

1
0

0
21

 where b is an 

unknown constant. This system is  
 a) Uncontrollable for b = 1    

 b) Uncontrollable for b = 0 
 c) Uncontrollable for all values of b 

d) Controllable for all values of b 
 
Q.152 Given the matrix A = 

















−−− 6116
100
010

 

 The eigen values of A are: 
 a) 3,2,1 −−−   b) 3,2,1−  
 c) 6,0,0 −   d) 6,11,6 −−−  
 
Q.153 System transformation function 

H(z) for a discrete time LTI system 
expressed in state variable form 
with zero initial conditions is  

 a) c(zI – A)-1 b + d b) c(zI – A)-1 
 c) (zI – A)-1z  d) (zI – A)-1  
 

Q.154 Which one of the following is the 
state-space model of the circuit 
shown below? 

 

a)

[ ]

1 1

2 2

1

2

1 00x t x tL u(t)1x t x t1 0 CC
x t

y(t) 0 1
x t

         = +          −    
 

=  
 

&
&

 

b)

[ ]

1 1

2 2

1

2

0 1x t x t 0
u(t)1 1x t x t 1

C L
x t

y(t) 0 1
x t

       = +      − −      
 

=  
 

&
&

 

c)

[ ]

1 1

2 2

1

2

10x t x t 1L u(t)
x t x t1 00

C
x t

y(t) 1 0
x t

 
      

= +      
     −  

 
=  

 

&
&

  

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



d)

[ ]

1 1

2 2

1

2

10x t x t 0L u(t)
x t x t1 10

C
x t

y(t) 1 0
x t

 
      

= +      
     −  

 
=  

 

&
&

 
 
Q.155 A linear time invariant system with 

input u(t) and output y(t) is 
described by the state-space 
representation as given below. 

 x1(t) = x2(t) 
 x2(t) = x1(t) + x2(t) + u(t) 
 and  y(t) = x1(t) + 3x2(t) 
 The transfer function of the system 

is 

 a) 2

s 3
s s 1

+
− −

  b) 2

s 3
s s 1

+
+ +

 

 c) 2

3s 1
s s 1

+
+ +

  d) 2

3s 1
s s 1

+
− −

 

 
Q.156 The transfer function of a phase lead 

compensator is given by 1 aTs
1 Ts
+
+

 

where a>1 and T>0. The maximum 
phase shift provided by such a 
compensator is 

 a) tan 1 a 1
a 1

− + 
 − 

 b) 1 a 1tan
a 1

− − 
 + 

 

c) sin 1 a 1
a 1

− + 
 − 

 d) sin 1 a 1
a 1

− − 
 +   

 
Q.157 Indicate which one of the following 

transfer functions represents phase 
lead compensator? 

 a) s 1
s 2
+
+

  b) 6s 3
6s 2
+
+

 

c) s 5
3s 2
+
+

  d) 2

s 8
s 5s 6

+
+ +

 

 
Q.158 A property of phase-lead 

compensation is that the 
a) Overshoot is increased   
b) Bandwidth of closed loop system 

is reduced 

c) Rise-time of closed loop system 
is reduced  

d)  Gain margin is reduced 
 

Q.159 Which one of the following is the 
correct expression for the transfer 
function of an electrical RC phase-
lag compensating network? 

 a) RCS
(1 RCS)+

  b) RC
(1 RCS)+

 

 c) 1
(1 RCS)+

  d) 1
(1 RCS)+  

 

Q.160 The pole-zero plot shown in the 
figure is that of which one of the 
following? 

 
a) Integrator   
b) PD controller  
c) PID controller  
d) Lag-lead compensator 

 
Q.161 What is the effect of phase lead 

compensator on gain cross – over 
frequencies and on the bandwidth 
(ωb)? 
a)  Both are increased   
b) ωcg is increased but ωb is 

decreases   
c) ωcg is decreased but ωb is 

increased 
d)  Both are decreased 

 
Q.162 The transfer function of a P-1 

controller is: 
 a) Kp + Ki s  b) Kp + (Ki/s) 

c) (Kp/s) + Ki s d) Kp s + (Ki/s) 
 
Q.163 The transfer function of a phase-

lead compensator is given by: 
1 3TsG(s)
1 Ts
+

=
+

where T > 0. What is  

the maximum shift provided by such 
 a compensator? 
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a) 90° b) 60°
c) 45° d) 30°

Q.164 In the control system shown above 
the controller which can give zero 
steady-state error to a ramp input is 
of 

 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

a) Proportional type
b) Integral type
c) Derivative type
d) Proportional plus derivative type

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
(b) (a) (d) (b) (d) (c) (c) (b) (c) (d) (a) (a) (b) (a) 
15 16 17 18 19 20 21 22 23 24 25 26 27 28 
(b) (a) (b) (b) (a) (d) (a) (b) (c) (d) (a) (a) (a) (b) 
29 30 31 32 33 34 35 36 37 38 39 40 41 42 
(b) (c) (c) (b) (a) (b) (a) (b) (d) (b) (b) (d) (d) (c) 
43 44 45 46 47 48 49 50 51 52 53 54 55 56 
(c) (a) (d) (c) (c) (b) (d) (b) (b) (a) (a) (a) (d) (b) 
57 58 59 60 61 62 63 64 65 66 67 68 69 70 
(d) (d) (b) (b) (a) (b) (a) (c) (c) (b) (a) (b) (c) (b) 
71 72 73 74 75 76 77 78 79 80 81 82 83 84 
(c) (c) (c) (c) (b) (c) (a) (c) (d) (a) (d) (b) (a) (c) 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 
(b) (c) (c) (c) (d) (c) (c) (d) (a) (a) (a) (b) (c) (a) 
99 100 101 102 103 104 105 106 107 108 109 110 111 112 
(c) (a) (c) (d) (b) (c) (c) (d) (a) (c) (a) (b) (c) (a) 

113 114 115 116 117 118 119 120 121 122 123 124 125 126 
(b) (b) (c) (c) (c) (b) (d) (b) (c) (d) (d) (a) (d) (d) 

127 128 129 130 131 132 133 134 135 136 137 138 139 140 
(a) (d) (d) (b) (d) (d) (d) (d) (d) (b ) (a) (b) (c) (a) 

141 142 143 144 145 146 147 148 149 150 151 152 153 154 
(b) (a) (b) (d) (a) (c) (d) (b) (a) (a) (d) (a) (a) (a) 

155 156 157 158 159 160 161 162 163 164 
(d) (d) (a) (c) (c) (d) (a) (b) (d) (b) 

ANSWER  KEY: 
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Q.1 (b) 
( )

( )
2n

1 2

G s H (S)C (s)
N(s) 1 G s H (S)H (S)

−
=

+

( ) ( ) ( )1 2
1

1 for G s H S H S |
H (S)

= − ?

Q.2 (a) 
Forward paths 

1 3P abcef   P abn lg f= =

2 4P ajigf   P ajkmef= =
Loop gain 

1 3L cd  L nmd= =

2 4L hi  L klh= =

Q.3 (d) 
Free body diagram of M is shown 
below: 

By network law 
M B kf f f 0+ + =  

( ) ( ) ( ) ( )( )
2

2 2
2 12

d y t dy t
M B k y t y t 0

dt dt
+ + − =  

Q.4  (b) 

1

1 2

GC(s)
R(s) 1 G G

=
−

1 2 1

1 2 2 1 2

G G GC(s) 1.
R(s) 1 G G G 1 G G

= =
− −

Q.5  (d) 

o

1

V (s) S 2S 1s ||1 1 1
V (s) 1 s s 1

+
= + = + =

+ +

Q.6  (c) 
Forward paths Individual Loops 

1P adfi=  

1 2L bL dc= =

2P aefi=

3L ec=  

3P ahi=  

4 5L fgL hgc= =
Non touching Loop pairs: 1 4L L

Q.7 (c) 
Negative feedback decreases the 
distortion. 

Q.8 (b) 
1 2 3 2

1 2 1 2 3 1 4

G G G GC(s)
R(s) 1 G G H G G H G

+
=

+ + −

Q.9 (c) 
1 2

2 2 1 2 1 2

G GC(s)
R(s) 1 G H G G H H

=
− +

Q.10  (d) 
1. 2 1 1 9 3x a x a x= +
2. 3 2 2 8 4x a x a x= +
3. 4 3 3 5 2 7 4x a x a x a x= + +
4. 5 4 4 6 2x a x a x= +

EXPLANATIONS 
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Q.11 (a) 
1 2 3 2

2 1

G G G G
1 G H

+
+

Q.12 (a) 
C G
R 1 GH FG
=

+ −

Q.13  (b) 
1

1

C(s) 1 S a s a
R(s) 1 S b s b

−

−

+ +
= =

+ +

Q.14 (a) 
1 2

2 1 1 2 2

G GY(s)
x(s) 1 G H G G H

=
− +

Q.15  (b) 

o

1

V (s) R SRC
1V (s) 1 SRCR

SC

= =
++

Q.16 (a) 
For block diagram 1 
C(s) k 1
R(s) S 1

= +
+

S 1 k
S 1
+ +

=
+

For k=1 both are same 

Q.17 (b) 
Number of loops are 3 
Number of forward paths is also 3 
C 8 12 20 40
R 1 24 16 40 81

+ +
= =

+ + +
Q.18 (b) 

2

1

G HC
R 1 GH

+
=

+
(Using SFG) 

Q.19 (a) 
1 2

1 1 2 2

G GC(s)
R(s) 1 G H G H

==
+ −

(Using SFG) 

Q.20 (d) 
1. Feedback reduce system error
2. Feedback can make a stable

system as unstable

Q.21 (a) 
Forward path gain  
Individual Loop gain 

1P rsu=  

1L st=

2P efh=

2L fg=  
( )2

1

rsu 1 gf efh(1 st)x
x 1 st fg stfg

− + −
=

− − +

( )
( )

2

1

rsu 1 fg efh(1 st)x
x 1 st (1 fg)

− + −
=

− −
rsu efh

1 st 1 fg
= +

− −

Q.22 (b) 
For negative feedback 

Gain, F
A 10 10 10A

1 AB 1 AB
× ×

= =
+ +

3B 9 10−= ×

Q.23 (c) 
Consider R(s)=0 

2

1 2

G (s)C(s)
D(s) 1 G (s)G (s)

=
+

For , ( ) ( )1 2G s G s 1?  

( ) ( )1

1C s D(s)
G s

=

Step disturbance can be reduced by 
increasing the gain of G1(s) 

Q.24  (d) 
Transfer function, 

( ) ( )
( )

y s AkT s
R s S a Akβ

= =
+ +

Sensitivity %change in T(s)
%change in parameter

=

( )T
k

%change in T s T kS
%change in k k T

∂
= = ×

∂
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S a
s a Akβ

+
=

+ +
T
β

T β AkβS
β T (s a Akβ)
∂

= × = −
∂ + +

T
A

T A S aS
A T s a Akβ
∂ +

= × =
∂ + +

SβT is negative hence it doesn’t 
reduce the closed loop sensitivity. 

Q.25  (a) 
Free body diagram of mass is 

By Newton’s law 
m k bf f f f (t)+ + =  

2

2

d x dxm kx b f (t)
dt dt

+ + =

Q.26 (a) 
Response, ( ) t  c t te for t o−= ≥

( )
( )2

1c s
s 1

=
+

Input, ( )r t tu(t)=

( ) 1R s
S

=

( )2
C(s) s
R(s) s 1

=
+

Q.27  (a) 

( )
C(s) G(s)M
R(s) 1 G s H(s)

= =
+

( )
M
G

M G 1S
G M 1 G s H(s)

∂
= × =
∂ +

Q.28 (b) 
Step response, 2 tc(t) t e−=

3C(s) 2 / (s 1)= +  
Input r(t) u(t)=  

1R(s)
s

=

( )
( )

C s
Transferfunction

R s
=

( )3
2s

s 1
=

+

Q.29 (b) 
Closed loop system is less sensitive 
to parameter variations. 
Closed loop system has the ability to 
control the system transient 
response. 

Q.30 (c) 
tc(t) 1 10e−= −

( ) 1 10C s
s s 1

= +
+

( ) ( )
s 1 10s 1 9s
s s 1 s s 1
+ − −

= =
+ +

Q.31 (c) 
The characteristics equation is given 
by  
( )2 2s a b 0+ + =

2 2 2S 2as a b 0+ + + =  
Comparing with standard 2nd order 
equations, 
We get 

2 2 2 2 2
n nω a b ω a b= + ⇒ = +

n 2 2

a2ξω 2a ξ
a b

= ⇒ =
+

Q.32 (b) 

Given ( )
2tr t 1 t
2

= + +

( ) 2 3

1 1 1R s
s s s

= + +

( )ss s 0

sR(s)e lim
1 G s H(s)→

=
+

1 0.1
10

= =  

Q.33 (a) 
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( ) 2

10(s 1)G s
s (s 2)

+
=

+

( ) ( ) 2

1 2r t 1 2t R s
s s

= + ⇒ = +

( )ss s 0

sR(s)e lim 0
1 G s H(s)→

= =
+

 

Q.34 (b) 
( ) ( ) ( )

2

2

d c t dc t
4 8 16c t

dt dt
+ +

16u(t)=  
Applying LT both sides we get 

( ) ( ) ( )24s C s 85C s 16c s+ +

16R(s)=  
(Since u(t) is input) 

2 2

c(s) 16 4
R(s) 4s 8s 16 s 2s 16

= =
+ + + +

2
n n

radω 4 ω 2= ⇒ =

1ξ
2

=

Q.35 (a) 

( ) kOLTF,G s
s(s 1)

=
+

2

C(s) kCLTF,
R(s) s s k

=
+ +

ξ 1= for critically damped system 
2
n nk kω = ⇒ω =

n n
12 1
2

ξω = ⇒ω =

2
n

1k
4

∴ = ω =

Characteristic equation is given by 
2 1s s 0 s 0.5, 0.5

4
+ + = ⇒ = − −

Q.36 (b) 
The CE is given by 

2s 13.25 121 0+ + =
2
n nω 121 ω 11= ⇒ =  

n
13.22ξω 13.2 ξ 1
22

= ⇒ = <  

Hence, the system is under damped 
Setting time

s
n

4 4t 4T 0.6s
ξω 6.6

= = = =

Q.37 (d) 

( ) 2

10G s
s (s 4)

=
+

( ) 2r t 2 3t 4t= + +

( )ss
lt s R(s)e 3.2

s 0 1 G s H(s)
= =

→ +
 

Q.38 (b) 
Given, Impulse response, 

( ) 0.8t1c t e Sin(0.6t)
6

−=

In general the impulse response is 
nξω t

dke sin(ω t)−  

nξω 0.8=  
2

d nω ω 1 ξ 0.6= − =
Solving above equations we get 

nω 1rad / sec=  
ξ 0.8=  

Q.39 (b) 

( ) 2

100M jω
ω 10 2jω 100

=
− + +

2
n nω 100,2ξω 10 2= =

n
1ω 10ξ
2

= =

p 2

1M 1
2ξ 1 ξ

= =
−

 

Q.40 (d) 

Given ( ) ( )
5(1 0.1s)G s

s 1 5s (1 20s)
+

=
+ +

The above system is type -1 
For step input 

ss
p

Ae
1 k

=
+

( )p s 0
k lim G s

→
= = ∞

sse 0∴ =  
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For ramp input 

ss
v

Ae
k

=

( )v s 0
k limsG s 5

→
= =  

ss
10e 2
5

∴ = =  

For accelerations input 

ss
a

Ae
k

=

( )
t

2
a

s 0

k s G s 0
→

= =∫  

sse = ∞

Q.41  (d) 

Given, n
radω 10 ,ξ 0.1
sec

= =

For 2% s
n

4t 4T 4sec
ξω

= = =

Q.42  (c) 
E(s) R(s) C(s)= −  

KE(s) R(s) E(s)
s 5

= −
+

( )
( )

E s s 5
R s s 5 K

+
=

+ +

Q.43  (c) 
Unit step response, 
( ) ( )tc t 1 e 1 t u(t)− = − + 

Impulse response  

( ) tdh t c(t) te u(t)
dt

−= =

Transfer function, 
( )2

C(s) 1
R(s) S 1

=
+

Since poles lie on –ve real axis are 
repeated hence system is critical 
stable 

Q.44  (a) 

( ) kG s
s(s a)

=
+

( )r t tu(t)=

( )ss s 0

s R(s) ae lim
1 G s H(s) k→

= =
+

sse ss
k 2

ss

e k a ks 1ak e k k

∂ −
= × = × = −
∂

sse ss
k

ss

e a 1 as 1aa e k k

∂
= × = × =

∂

Q.45  (d) 

Given, ( ) kC s
S

=
+ ∝

( ) tC t ke−∝=

At  ( )2 2t t ,C t 0.37k= =
2t0.37k ke−∝=

At 
2

1
t

∝= above equation will be 

satisfied. 

Q.46  (c) 

n2

400 ω 20,ξ 0.3
s 12s 400

→ = =
+ +

 

Under damped 

n2

900 ω 30,ξ 1.5
s 90s 900

→ = =
+ +

Over damped 

n2

225 ω 15,ξ 1
s 30s 225

→ = =
+ +

 

Critically damped 

2

625 ξ 0
s 625

→ =
+

Undamped 

Q.47  (c) 
In general peak time is given by 

p 2
d n

nπ nπt
ω ω 1 ξ

= =
−

For 2nd peak, n=3 hence, 

p 2
n

3πt
ω 1 ξ

=
−

Q.48  (b) 

( ) kG s
s(s 1)

=
+
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2

C(s) k
R(s) s s k

=
+ +

2
n nω k ω k= ⇒ =

n
12ξω 1 ξ

2 k
= ⇒ =

2
πξ

1 ξ
p%M e 100% 50

−
−= × =  

2
πξ

1 ξ 1e
2

−
− =

Substituting the value of ξ ,we get, 
k = 5.39 

Q.49  (d) 
( ) 5t 5tc t 1 e 5te− −= − −

( )
( )2

25c s
S s 5

=
+

 (by L.T) 

( ) 1R s
S

=

2

C(s) 25
R(s) s 10s 25

=
+ +

2
n nω 25 ω 5= ⇒ =  

n2ξω 10 ξ 1= ⇒ =  
Impulse response,  

5t 5td (1 e 5te )
dt

− −= − −

5t 5t 5t5e 5e 25te− − −= − +
5t25te−=  

Q.50 (b) 
Given nξ 0.6,ω 2rad / sec= =  
Peak time, 

p 2
d n

π πt 1.95sec
ω ω 1 ξ

= = =
−

 

Setting time  s
n

4 4t
ξω 0.6 2

= =
×

3.33sec=

Q.51 (b) 

Given y(s) S H(s)
x(s) 1 S

= =
+

( ) jωH jω
1 jω

=
+

( )x t sin t,ω 1rad / sec= =

( ) ω 1
j 1H jω | 145°

1 j 2= = =
+

( ) 1y t sin(t 45°)
2

= +

Q.52 (a) 
πPhase, ωT
2

φ = − −

( )1tan ω−−

1At ω ω , 0= ∅ =

( )1 πωT tan ω
2

−− − =

Taking tan both sides, weget
( )
( )
1 1

1 1

tan ω T ω
1 tan ω T ω

+
= ∞

−

( ) ( )1 1
1

1ω cot ω T
tan ω T

= =

Q.53 (a) 

( ) ( )
( ) 2

C sk kG s
s(s k) R s s s k

= =
+ + +

2
n nω k ω k= ⇒ =

n
12ξω 1 ξ

2 k
= ⇒ =

As k ,ξ 0→∞ =

Q.54 (a) 
( ) 6tc t 12.5e sin8t−=

( )

2
n d n

2 2 2
n n

n 2
n

n

ξω 6 ω ω 1 ξ 8
6 ω ω ξ 64ξ ω 10

10 ω 100
0.6 ω 10

= = − =
− == =

=
= =

Q.55  (d) 

ss
p v a

1 1 1e
1 K K K

= + +
+

Q.56  (b) 
For dominant pole the transients die 
out slowly. 
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Q.57  (d) 
nω 3rad / sec=

ξ 0.5=  
2

r n
3ω ω 1 2ξ 3 1 0.5
2

= − = − =

2.12rad / sec=

r 2

1 1 2M 1.16
1 32ξ 1 ξ 1
4

= = = =
− −

Q.58 (d) 
Delay time →Rise time →Peak 
time →  settling time  

Q.59 (b) 

( ) 2

20G s
s 5s 20

=
+ +

2
n nω 20 ω 20= ⇒ =

n
52ξω 5 ξ

2 20
= ⇒ =

Setting time for ±2% is 

s
4 8t 4τ 1.6sec5 52

= = =

Q.60 (b) 

2

C(s) k CLTF
R(s) s 4s k

= →
+ +

 

2
n nω k ω k= ⇒ =

n2ξω 4=  
For ξ 0.5=  

nω 4=
Since 2

nk ω k 16= ⇒ =

Q.61 (a) 
Since the input is sinusoidal hence 
the steady state error is zero. 

Q.62  (b) 
For 3rd order system the rise time 
would be smaller that the equivalent 
2nd order system  

Q.63  (a) 

C(s) 1
R(s) S

=

( )c t 1= which is constant

Q.64  (c) 
For a critically damped system the 
poles lies on –ve real axis, are 
repeated. 

Q.65  (c) 
Since the given system is under 
damped and damping ratio ξ  is 
negative hence the roots will be 
complex conjugates on the right half 
of s-plane. 

Q.66  (b) 
We know that 

Steady state error, ss
Ae
k

=

By increasing system gain k, sse can 
be reduced 

Q.67  (a) 
Impulse response of 1st block is 

( ) ( )2t
1

dC t [ 0.5 1 e ]
dt

−= − + 2te−=

( )1
1C s

s 2
=

+
Impulse response of 2nd block is 

( ) t
2C t e−=

( )2
1C s

s 1
=

+
The overall transfer function 

( ) ( ) ( ) ( )1 2
1C s C s C s

s 2 (s 1)
= =

+ +

Q.68  (b) 
The transfer function of the 
diaphragm is 

2

C(s) 1
R(s) s 2s 2

=
+ +

For unit step input ( ) 1R s
S

=

( ) 2

1C s
s(s 2s 2)

∴ =
+ +
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The steady state value is given by  

 ( ) ( )
s 0

1C limsC s 0.5
2→

∞ = = =  

 
Q.69  (c) 

 r 2

1M
2ξ 1 ξ

=
−

 

Given rM 1=  

 
2

1 1
2ξ 1 ξ

∴ =
−

 

 ( )2 24ξ 1 ξ 1− =  

 2 44ξ 4ξ 1− =  
 4 24ξ 4ξ 1 0− + =  
 ( )( )2 22ξ 1 2ξ 1 0− − =  

 1ξ
2

=  

 
Q.70  (b) 

Given  st 6sec for 5%= ±  

 1ξ 0.707
2

= =  

s n
n

3t 0.6 ξω 5
ξω

= = ⇒ =  

nω 5 2=   
2

d n
1ω ω 1 ξ 5 2. 5
2

= − = =  

In general the poles location is  
n dS ξω jω= − ± 5 j5= − ±  

 
Q.71  (c) 

 3 2

C(s) k
R(s) S 6S 5s k

− =
+ + +

 

 

3

2

1

0

1 5s
6 ks
30 ks

6
s k





− 




 

So, k 0> & 30 k 0 system is stable
6
−

>   

 0 k 30∴ < <   

For  k 30,=  System is marginally 
stable 

 
Q.72  (c) 

 

4

3

2

1

0

3 5 2s
10 0 0s
5 2s
4s

2s
−

 

One sign change in first column so, 
unstable system. 

 
Q.73  (c)  

 3 2

C(s) k
R(s) S 7S 6s k

=
+ + +

 

 

3

2

1

0

1 6s
7 ks
42 ks

7
s k

−  

So k 0>  and  
42 k 0 for stability

7
−

>  

 0 k 42∴ < <   
 
Q.74  (c) 

 3 2

C(s) k(1 Ts)
R(s) S S kTs k

+
=

+ + +
 

 

3

2

1

0

1 kTs
1 ks

kT ks
ks
−

 

So kT k 0− >  
 T 1 0− >  
 T 1>  
 
Q.75  (b) 

 

4

3

2

1

0

2 3 10s
1 5s
7 10s

45 / 7s
10s

−  
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2 sign changes so two roots lie in 
right half  s plane−  

Q.76 (c) 
If poles of a system lie on the 
imaginary axis the system will be 
marginally stable. 

Q.77  (a) 
3

2

1

0

1 9s
6 4s
50s
6

s 4
No sing changes so all three poles lie 
in L.H.S of s plane− . 

Q.78 (c) 
4

3

2

1

0

1 3 ks
2 2s
2 ks

2 ks
ks
−

For the system to be oscillatory  
2 k 0 k 2− = ⇒ =  
The Auxiliary equation is   

22s k 0+ =  
2s 1 ω 1rad / sec= − ⇒ =  

Q.79  (d) 

Closed loop n
3 2

keq
s as k

→
+ +

3

2

1

0

1 0s
a ks

ks
a

s k

−

For k−∞ < < ∞   system is unstable 

Q.80  (a) 
Characteristic 

n 3 2eq s 6s 5s k 0+ + + =  

3

2

1

0

1 5s
6 ks
30 ks

6
s k

−

K=30 
For sustained oscillation 
Auxiliary equation is  

26s k 0+ =  
2s 5= −  
ω 5rad / sec=

Q.81  (d) 
4

4
3

2

1

0

1 24 ks
1 3 / 2s
20 ks

80 ks
20

s k

−

For k 80> there will be sign change 
in the first column 

Q.82  (b) 
0 23

1 32

1 2 0 31

10

3

a a
s

a a
s

a a a a
s a
s a

−

So, 1 2 0 3

1

a a a a 0
a
−

≥

1 2 0 3a a a a∴ ≥

Q.83 (a) 
( ) ( )3 2

1 2 1 2G s T T S T T S S k 0= + + + =

1 23

1 22

1 2 1 21

1 20

T T 1
s

T T k
s

T T T T k
s T T
s k

+
+ −

+

So, 1 2 1 2

1 2

T T T T k 0
T T
+ −

≥
+

1 2 1 2T T T T k∴ + ≥

© Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission



1 2

1 2

T Tk
T T
+

<

Q.84  (c) 
Characteristics eqn  

( )3 2s a b s abs k 0+ + + + =

( )

3

2

1

0

1 ab
s a b k
s

a b ab k
s

(a b)
s

0

+

+ −
+

So, ( )a b ab k
0

(a b)
+ −

≥
+

 

(a b)ab k+ ≥  
( )0 k a b ab∴ < < +

Q.85  (b) 
3 2s 25s 10s 50 0+ + + =  
3

2

1

0

1 10s
25 50s

8s
2s

Since there are sign change in the 
first column hence no rot will lie on 
RHS of s- plane Also there is no 
occurrence of Auxiliary equation 
hence no roots on jωaxis. 

Q.86  (c) 
4 3 2s s 25s 25 3 0+ + + + =
4

3

2

1

0

1 2 3
s

1 2
s

0 / ξ 3
s

2ξ 3
s ξ
s 3

−

Replace zero by ′ξ′ in s2row 

For  2ξ 3ξ 0
ξ
−

= = −∞

Since two sing changes, so two roots 
in RHS of s- plane 

Q.87  (c) 
3

2

1

0

1 10s
4 11s

29s
4

s 11
So coefficient in first column have 
same sing so, system is stable. 

Q.88  (c) 
6

5

4

3

3

2

1

0

s 1 8 20 16
s 2 12 16
s 2 12 16

0 0 0s
1 3s
3 8s

1/ 3s
8s

Auxiliary equation is  
( ) 4 2A s s 6s 8 0→ + + =

3dA(s) 4s 125
ds

= +

Solving Auxiliary equation we get 
s 2 j, 2 j, 2 j, 2 j= − −  

Q.89  (d) 
CE is given by  
( )( )2s 2s 2 s 2 k 0+ + + + =

3 2s 4s 6s 4 k 0+ + + + =  
3

2

1

0

1 6s
4 4 ks
20 ks

4
s 4 k

+
−

+
For the system to be marginally 
stable  
20 k 0 k 20

4
−

= ⇒ =  

Auxiliary equation is given by 
24s 4 k 0+ + =  
24s 24 0 ω 6rad / sec+ = ⇒ =  
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Q.90  (c) 
The stability of the given system 
depends on T alone because as T 
increase the system decay slowly 
and stability decreases. 

Q.91  (c) 
High gain result instability problem 

Q.92  (d) 
CE for the inner loop is given by 
( )( )( )s a s 2a s 3a k 0− + + + =

2 2
3 2

2

2a 3a
s 4as s

6a
 − −

+ +  
+ 

36a k 0− + =  
3 2 2 3s 4as a s 6a k 0+ + − + =  

2
3

3
2

3 3
1

0
3

1 a
s

4a 6a ks
4a 6a ks

4as
6a k

− +

+ −

− +
For stability 

3 36a k 10a< < x k y< <  
CE for overall system is  

3 2 2 3s 4as a s 6a 2k 0+ + − + =  
x yk 22
< <

Q.93  (a) 
Number of zeros =3 
Number of poles =2 

So number of loci terminating at ∞  
is 0 

Q.94  (a) 

( ) ( ) ( ) 2

kG s H s
s s 4 (s 4s 20)

=
+ + +

Poles 0, 4, 2 4j, 2 4j= − − + − −  

Since there is real axis loci between 
0 an -4  
Hence, number of B.A.P is one  

Q.95  (a) 
Close loop system eqn can be 
written as  

( ) ( ) ( ) 2

k(s 1)G s H s
s s 4 (s 2s 2)

+
=

+ + +
No of zero z=1  
Number of poles p = 4 
No of asymptotes N p z 3= − =  

Angle of asymptotic  ( )2q 1 180°
p z
+

=
−

When  q 0,θ 60°= =  
q 1,θ 180°= =  
q 2,θ 300°= =  

Q.96  (b) 
The number of separate root loci is 
m= number of poles. 
The number of zeros at infinity is 
m n−  and hence m n−  root loci will 
approach infinity. 

Q.97  (c) 
( )3 2s 5s k 6 s k 0+ + + + =

( )3 2s 5s 6s S 1 k 0+ + + =

( ) ( ) ( )
3 2

s 1 k
G s H s

s 5s 6s
+

=
+ +

( )
k(s 1)

s s 3 (s 2)
+

=
+ +

Asymptotes meet at centroid 

Centroid, 3 2 ( 1)σ
2

− − − −
=

4 2
2

= − = − ( 2,0)− is the centroid. 
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Q.98  (a) 
The loop gain is given by 

( ) ( ) 2

5ksG s H s
s 10

=
+

Poles s j 10= ±  
Zero, s 0=  
One zero is considered at ∞ 

Q.99  (c) 

( ) ( ) ( )( )
k(s 2)G s H s

s s 1 s 4 (s 4)
+

=
+ + +

No of asymptote N = p − 2 
N 4 1= −  
N 3=  
Centroid  

real part of poles real part of zero
p z
−

=
−

∑ ∑

( ) ( ) ( )1 4 4 ( 2)
3

− + − + − − −
=

7
3
−

=

Q.100  (a) 

( )
2

2

k(s 64)G s
s(s 16)

+
=

+
Zeros  s = ±j8 
Poles, s = 0, ±j4 
One zero is considered at infinity 

Angle of departure = o° 

Q.101 (c) 
For the given transfer function there 
are 4 poles and 1 zero. So there will 
be three zeros at infinity. 

Q.102 (d) 
As shown in fig, two poles are at 
origin and one pole is at –ve real 
axis so, 

2
1

kT.F
s (sT 1)

=
+

Q.103 (b) 

( ) ( ) ( )
k(s 1)G s H s

s s 3 (s 4)
+

=
+ +

Root locus of the system can lie on 
the real axis between  s=0 and 
s 4= −  

Q.104 (c) 
Put s z 1= − we get  

5 4 3 2z 10z 35z 50z 24 z 0+ + + + =  
Therefore 4 roots lie to the left of 
line s 1 0+ = and rot lies on s 1 0+ =  

5z  1 35 24 
4z  0 50 
4z  1 5 
3z  30 24 
3z  5 4 
2z  21

5
1z  4 
0z  0 

There are 4 roots lie to the left of 
line s+1=0 and 1 root lies on s+1=0. 

Q.105 (c) 

( ) ( )( )
k(s 3)G s

s s 1 s 2 (s 5)
+

=
+ + +

real axis intercept  
real port of pole real port of zero

p 2
−

=
−

∑ ∑

 ( )1 2 5 ( 3)
σ

3
− − − − −

=  
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5σ
3
−

=

Q.106 (d) 

( ) ( )
k(s 1)G s

s s 2 (s 3)
+

=
+ +

There are 3 root loci branches 

Q.107 (a) 
The addition of open loop zero pulls 
the rot loci towards the left and 
therefore system becomes more 
stable. 

Q.108 (c) 

( ) ( )
( )( )2

k(s 1)G s H s
s s 4 s 2s 2

+
=

+ + +

Poles s 0, 4, 1 j1= − − ±  
Zeros, s 1= −  

Centroid, 4 1 1 ( 1) 5σ
3 3

− − − − −
= = −

Q.109 (a) 

( ) ( ) 2

k(s 2)G s H s
s 2s 2

+
=

+ +
To find break point consider 
( ) ( )G s H s 1= −

2s 2s 2k
s 2
+ +

∴ =
+

( )( ) 2

2

s 2 2s 2 (s 2s 2)dk 0
ds (s 2)

+ + − + +
= =

+

( )2 22 s 3s 2 s 2s 2 0⇒ + + − − − =
2s 4s 2 0⇒ − + =

s 0.58, 3.41= − −  
s 3.41= −  lies on root locus hence it 
is valid break point. 

Q.110 (b) 
Each pole produces a slope of

20dB / dec−   

Each zero produces a slope of 
20dB/dec 
14p 280dB / dec→−  
2z 40dB / dec→+  
Total = 240dB / dec−  
∴ slope of highest frequency 
asymptotic  is 240dB / dec−  

Q.111 (c) 

( ) 2

s 5G s
s 4s 9

+
=

+ +
Phase plot of the above system is 
shown below: 

Hence angle varies between 
0  to -180° °  

Q.112  (a) 
Type of the system is determined by 
the number of poles at origin. Since 
the initial angle is 0° hence there are 
no poles at origin Hence Type = 0 

Q.113 (b) 

( ) 1G s
s

=

gcω 1rad / sec=

gc

o
ω ω180 | 180 90 90=∴ +∅ = − =  

Q.114 (b) 

( ) 2

kG s
s

=

At gcω ω , G( jω 1= =  

2
gc

kg( jω 1
ω

= =

gcω krad / sec=

Q.115  (c) 
The slope of asymptotic bode plot is 
the integer multiple of 20dB / dec±  
or 6dB / octave±  
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Q.116  (c) 
Type 2⇒  2 poels at origin. 
One pole gives 20dB / decade−  hence 
Two poles give 40dB / decade−  of 
Initial slope 

Q.117  (c) 
In general error at corner frequency 
is given by 3n dB±  

Q.118  (b) 
1. Initial slope 20dB / decade− . 

Hence it is Type 1 system

2. ( ) 1
3

3

1k ω
ω

−= =

ss 3
1e ω
k

= =

3. 1 3
2

ω ωω
2
+

≠

Q.119  (d) 
gcω ωPM 180° Φ | == +

gcω ωΦ | 90°= = −  (given) 
PM 180° 90° 90°∴ = − =

Q.120  (b) 
( )G s s 1= +

( )G jω ` jω 1= +

( ) 2M G jω ω 1= = +

ω 1M | 2 1.41= = =  
( ) ( )1Φ G jω tan ω−= ∠ =

( )1
ω 1Φ | tan 1 45°−
= =  

Q.121  (c) 

1. Resonant peak, r 2

1M
2ξ 1 ξ

=
−

Peak overshoot, 
2

πξ
1 ξ

pM e 100%
−

−= ×  
Both are function of  ξ only 

2. 2
r nω ω 1 ξ= −

For   1ξ
2

=

rω 0=  
3. As rM  increases, ξ  decreases 

and pM  increase hence it is true. 

Q.122 (d) 
A minimum phase transfer function 
is one whose all the poles and zeros 
are on the left half of s-plane 

Q.123 (d) 
None of the transfer function are 
minimum phase. Because none of 
them have all their poles and zeros 
on the left half of s-plane. 

Q.124  (a) 
1 s
1 s
−
+

 is non minimum phase system. 

Q.125  (d) 
Low frequency asymptote decide 
the number of poles at origin which 
is nothing but type of system  

60dB / dec 3− ⇒ poles are origin  
Hence Type III system, 

Q.126  (d) 
For an all pass network the poles lie 
on the left half of s-plane and zero 
lies symmetrically on the right half 
of s-plane 

Q.127  (a) 
1. In general for n zeros the error

at corner frequency  3ndB= +
For n 1=  error 3ndB= +

2. Phase angle for complex
conjugate poles doesn’t depend
on damping ratio.

Q.128 (d) 

( ) 2

10G s
0.66s 2.33s 1

=
+ +
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The corner frequencies are nothing 
but the magnitude of poles and 
zeros. 
The poles are given by the roots of 

20.66s 2.33s 1 0+ + =
20.66s 0.33s 2s 1 0+ + + =

( ) ( )2s 1 1 2s 1 0+ + + =

( )( )0.33s 1 2s 1 0+ + =

1 1s ,
0.33 2

−
= −  

Hence corner frequencies are 3, 0.5 

Q.129  (d) 
Gain margin,GM

( ) ( )
pcω ω

1 20log log 0.64 3.86dB
G jω

=

= = − =

Q.130  (b) 

( ) jωG jω
1 jω

=
+

For ( )ω 0,G jω=

1 10 0°(M Φ )= ∟ ∟

For ( ) 2 2ω ,G jω 1 0°(M Φ )= ∞ = ∟ ∟  

1 2Φ Φ 0− =  hence ending direction 
is not considered  
Since finite poles is neat to the 
imaginary axis hence starting 
direction is clockwise  

Q.131  (d) 
For a stable system both gain 
margin & phase margin must be 
positive. 

Q.132 (d) 
1 1GM 2.5
a 0.4

= = =  

Q.133  (d) 

When –1 j0+  is located in region I, 
the number of encirclements N = 0 
Hence system is stable  
When  –1 j0+  is located in region II 
then, N 2= −  
Hence system is unstable. 

Q.134  (d) 

( ) ( )
( )

k s 3 (s 5)
G s

s 2 (s 4)
+ +

=
− −

The number of right half poles is 2 
For system to be stable the number 
of rotation around – 1 + j0 should 
be 2 in anticlockwise direction. 
At ω 11=  

4G( jω) k k(1.33)
3

= =

1For k
1.33

> the number of 

encirclements around –1 j0+  would 
be 2 in  anticlockwise direction 
hence system is stable. 
N P 2= =  

Q.135 (d) 
Type 2,Order 4= =

Q.136  (b) 
The number of half circle represents 
the type of system .Here number of 
half circles =1 Hence Type =1 

Q.137 (a) 
At ( )pcω ω , G jω 180°= ∠ = −  

( ) ( )1
1G jω 90° tan ωT−∠ = − −

( )1
2tan ωT−−

( )1
pc 1180° 90° tan ω T−− = − −

( )1
pc 2tan ω T−−

pc
1 2

1ω
T T

⇒ =

Gain Margin
( )

1 2

1 2pcω

T T1
T TG jω ω

=

+
= =
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Q.138 (b) 
At ( )ω 0,G jω 1 0°= = ∟

At ( )ω ,G jω 1 180°= ∞ = −∟

( )
( )2

1G s
s 1

∴ =
+

Q.139  (c) 

( ) 2

1G jω
ω 1

=
+

At ( )gcω ω , G jω 1= =  
2
gcω 1 0⇒ + =

gcω 1rad / sec=

( )
gcω 1rad/sec

G jω |
=

∅ = ∠

( )1 o2 tan 1 90−= − = −

Phase margin o o o180 90 90= − =

Q.140 (a) 

( ) pcω

1 1GM
aG jω ω

=

= =

Q.141  (b) 
Gain margin close to unity or phase 
margin close to zero is oscillatory. 

Q.142  (a) 

State Model is obtained by Diagram 
1 1 2 2 1X 3x x C x= − + =&

2 1 2X u 2x= −&

1

3 1 0
x x u

0 2 1
−   

= +   −   
&

[ ]2C 1 0 x=

c c

A AB
Q 0 1 Q 1 0

1 2

 
 = = − ≠ 
 − 

 0 0

C 1 0
Q Q 1 0

CA 0 1
 

= = ≠ 
 

 

c 0Q 0, Q 0, A 0≠ ≠ ≠  
hence controllable and observable 

Q.143  (b) 
Characteristic neq SI A 0⇒ − =  

s 0 0 2
0

0 s 2 0
   

− =   
   

s 2
0

2 s
− 

= − 
2s 4 0⇒ − =

s 2 j= ±  
So poles are s 2 j= ±  and −2j 

Q.144  (d) 
Adj[SI A]T.F C B D

SI A
−

= +
−

[ ] s 3 1 0
2 0

2 s 1
s 1
2 s 3

+   
   −   =

−
+

2

Y(s) 2T.F
U(s) 3 2

= =
+ +s s

Q.145  (a) 

Let ( ) 2

Y(s) 25 1sG s
U(s) s 75 9s

+ °
= =

+ + °
Let 1s° x→

1
1 2s x x→ =&

2
2s x→ &

( ) 2 1...  Y s ....2x ..1x .(1)∴ = +

( ) 2 2 1U s x 7x 9x= + +&
So, ( )2 2 1.....x U s 7 .......(2)x 9x= − +&  

1 2............ 3x x .( )=&  
From eqn (1) (2) & (3) 

0 1 0
x x u;

9 7 1
   

= +   − −   
[ ]y 1, 2 x=

Q.146 (c) 

We have [ ]C b, 0= and 
1 2

A
0 1
 

=  
 
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Observability 
T T T

0Q C C A =  

0

b b
Q

0 2b
 

=  
 

2
0Q 2b=

System is observable when |Q0| ≠ 0 
so given system observable for all 
non zero values of b 

Q.147 (d) 
( )C Adj SI A B D

T.F
SI A
− +  =
−

[ ]

( )

s 2 0 1
1 1

0 s 1 0 1
s 2 (s 1) (s 1)

+   
   +   = =
+ + +

Q.148  (b) 
Controllability [ ]cQ B, AB=

c

0 1
Q

1 3
 

=  − 

cQ 1 0= − ≠

A 2 0= ≠

Therefore the system is controllable 
Since be Q e(A)=

System observability 
T T T

bQ C C A =  

b

1 2
Q

1 2
− 

=  − 

bQ 0but A 2 0= = ≠

System is not observable 
Since be Q e(A)≠  

Q.149 (a) 
State transition matrix is given by 

Ate  It is also called zero input 
response It represents transient 
response or force for response. 

Q.150 (a) 
Characteristic  

neq SI A 0⇒ − =  

1 0 0 1
S 0

0 1 3 5
   

− =   − −   
s 0 0 1

0
0 s 3 5
   

− =   − −   
 

2s 5s 3 0+ + =  

Q.151  (d) 
Controllability [ ]cQ B, AB=

c

0 2
Q

1 b
 

=  
 

cQ 2 0, A b= − ≠ =

So system is uncontrollable for b =
0,  since cP(Q ) e(A)≠  

Q.152 (a) 
Characteristics neq SI A 0⇒ − =  

s 0 0 0 1 0
0 s 0 0 0 1 0
0 0 s 6 11 6

   
   − =   
   − − −   

3 2s 6s 11s 6 0∴ + + + =  
Then s 1, 2, 3= − − −  
Since, closed loop poles are nothing 
but eigen value. 

Q.153  (a) 
[ ] 1c ZI A b d−− +

Q.154 (a) 
( )

11 L 2 cX i x V i t u(t)= = =

Applying KCL we get 
( ) L ci t i i 0− + + =  

( )c 1i u t X= −

( )c
1

dvc u t X
dt

= −

1
2

Xux ........(1)
c c

= −&

Applying kVL we get 
( )L cV t V (t)=

L
2

diL X
dt

=
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2
1

Xx  .........(2)
L

=&

( ) ( )0 c 2  .....Y V t V t ....X .(3)= = =

From (1), (2) (3) we get 
10 0Lx x u11 c0

c

 
  

= +   
    −  

&

[ ]Y 0 1 x=

Q.155 (d) 
Given 1 2x X=&

2 1 2x X X u= + +&  

1 2Y X 3X= +

2

Y(s) 3s 1
U(s) s s 1

+
=

− −

Q.156 (d) 
The maximum phase provided is 

1
max

a 1Φ sin
a 1

− − =  + 
 

Q.157 (a) 
For phased lead Compensator pole 
zero diagram is  

S 1
S 2
+
+

satisfies the above condition 

Zero, i.e. S 1= −  is neat to imaginary 
axis compate to pole i.e. S 2= −  

Q.158 (c) 
Phase lead compensator affects the 
transient performance of the 
system. 

Q.159 (c) 
For phase lag network pole must be 
near to the imaginary axis  

For 1
1 RCS+

Poles, 1S
RC

= −

Zero, s = ∞

Q.160 (d) 
The pole zero plot of lag lead 
compensator is  

Q.161 (a) 
Both gcω  and BW  are increased by 
phase lead compensator. 

Q.162 (b) 
The transfer function of PI 

Controller is i
p

kk
s

+

Q.163 (d) 
1

max
a 1Φ sin
a 1

− − =  + 
 

= 1 3 1sin 30°
3 1

− −  = + 

Q.164 (b) 
Without controller 

( ) 9G s
s(s 2)

=
+

  Type -1 

For ramp input type -1 system gives 
constant steady state error  
If integral controller is employed the 

( ) i
2

9KG s
s (s 2)

=
+

  Type -2 

sse 0=
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